Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (2) : 201-204    https://doi.org/10.1007/s11706-009-0024-1
RESEARCH ARTICLE
Mechanical properties and electronic structures of one BN nanotube under radial compression
Hai-jun SHEN()
School of Aeronautics & Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
 Download: PDF(143 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Tersoff-potential based MD (molecular dynamics) method was used to simulate the radial compression of one (10,0) BN nanotube, and its compressive properties was compared with those of one (10,0) carbon nanotube. The semi-empirical PM3 QC (Quantum chemistry) method was adopted to calculate the electronic structures of the compressed BN-tube, and the effect of the radial compression on the electronic structures of the BN-tube was discussed. It is shown that (i) BN-tube has comparable radial compressive stiffness to carbon-tube, but lower energy-absorbing, load-support and deformation-support capabilities, and (ii) with the increase of compressive strain, the HOMO energy of the BN-tube increases, the LUMO energy and the LUMO-HOMO energy-gap decrease, and its chemical activity and conductance increase.

Keywords BN nanotube      radial compression      compressive properties      electronic structures     
Corresponding Author(s): SHEN Hai-jun,Email:Shj@nuaa.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Hai-jun SHEN. Mechanical properties and electronic structures of one BN nanotube under radial compression[J]. Front Mater Sci Chin, 2009, 3(2): 201-204.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0024-1
https://academic.hep.com.cn/foms/EN/Y2009/V3/I2/201
Fig.1  The (10,0) BN nanotube
Fig.2  The compressive deformation of BN-tube: =9%;=17%;=27%;=30%
Fig.3  The changes of energy and force for compressed BN- or carbon-tube: D curves; curves
Fig.4  The changes of FMO energy for the compressed BN-tube
Fig.5  The effects of compressive deformation on the LUMO, HOMO, and LUMO-HOMO energy
1 Henk W C, Postma T T, Yao Z, . Carbon nanotube single-electron transistors at room temperature. Science , 2001, 293: 76-79
doi: 10.1126/science.1061797
2 Shen H J. Compressive and tensile mechanical properties of Ar-filled carbon nanopeapods. Materials Letters , 2007, 61(2): 527-530
doi: 10.1016/j.matlet.2006.05.003
3 Shen H J. MD simulations on the melting and compression of C, SiC and Si nanotubes. Journal of Materials Science , 2007, 42(15): 6382-6387
doi: 10.1007/s10853-006-1205-2
4 Jia J F, Wu H J, Jiao H J. Structure and properties of BN nanotubes. Acta Chimica Sinica , 2004, 62(15): 1385-1391 (in Chinese)
5 Hirano T, Oku T, Suganuma K. Atomic structure and electronic state of boron nitride fullerenes and. nanotubes. Diamond and Related Materials , 2000, 9: 625-628
doi: 10.1016/S0925-9635(99)00210-1
6 Ma R Z, Bando Y, Sato T. CVD synthesis of boron nitride nanotubes without metal catalysts. Chemical Physics Letters , 2001, 337: 61-64
doi: 10.1016/S0009-2614(01)00194-4
7 Han W, Bando Y, Kurashima K, . Synthesis of BN-NTs from C-NTs by a substitution reaction. Applied Physics Letters , 1998, 73: 3085-3087
doi: 10.1063/1.122680
8 Golberg D, Bando Y, Eremets M, . Nanotubes in boron nitride laser heated at high pressure. Applied Physics Letters , 1996, 69: 2045-2047
doi: 10.1063/1.116874
9 Srivastava D, Menon M, Cho K. Anisotropic nanomechanics of boron nitride nanotubes: Nanostructured “skin” effect. Physical Review B: Condensed Matter , 2001, 63: 195413-195416
doi: 10.1103/PhysRevB.63.195413
10 Shen H J. Creating carbon nanotube and researching into its mechanics properties by HyperChem. Computers and Applied Chemistry , 2004, 21(3): 485-487 (in Chinese)
11 Fletcher R, Reeves C. Function minimization by conjugate gradients. The Computer Journal , 1964, 7: 149
doi: 10.1093/comjnl/7.2.149
12 Tersoff J. Empirical Interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters , 1988, 61: 2879
doi: 10.1103/PhysRevLett.61.2879
13 Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B: Condensed Matter , 1989, 39(8): 5566
doi: 10.1103/PhysRevB.39.5566
14 Albe K, M?ller W. Modelling of boron nitride: Atomic scale simulations on thin film growth. Computational Materials Science , 1998, 10: 111-115
doi: 10.1016/S0927-0256(97)00172-9
15 Shen H J. MD simulations on the interaction between carbon nano-cones and rigid plane. Journal of Atomic and Molecular Physics , 2007, 24(5): 883-888 (in Chinese)
16 Leach A R. Molecular Modeling. England: Addison Wesley Longman Limited, 1996
17 Stewart J J P. Optimization of parameters for semiempirical methods.βI. Method. Journal of Computational Chemistry , 1989, 10: 209-220
doi: 10.1002/jcc.540100208
18 Shen H J, Chen Y. MD simulations of diametrally compressed single-walled and double-walled carbon nanotubes. Journal of Atomic and Molecular Physics , 2007, 24(3): 352-357 (in Chinese)
19 Yu Q, Zhu L. Introduction into Molecular Design. Beijing: Higher Education Press, 1998, 67
20 Fleming I. Frontier Orbitals and Organic Chemical Reactions. Indianapolis: Wiley Publisher, 2003
21 Damle P S, Ghosh A W, Datta S. Unified description of molecular conduction: from molecules to metallic wires. Physical Review B: Condensed Matter , 2001, 64: 201403
doi: 10.1103/PhysRevB.64.201403
22 Shen H J. Electronic transmission of C60, 2C60 and 4C60 fullerene molecules. Journal of Materials Science and Engineering , 2006, 24(1): 53-56
doi: 10.1007/3-540-31631-0_2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed