Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (2) : 132-144    https://doi.org/10.1007/s11706-009-0035-y
RESEARCH ARTICLE
Usage of polymer brushes as substrates of bone cells
Sabine A. LETSCHE1, Annina M. STEINBACH1, Manuela PLUNTKE2, Othmar MARTI2, Anita IGNATIUS3, Dirk VOLKMER1()
1. Institute of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany; 2. Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany; 3. Institute of Orthopaedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, D-89081 Ulm, Germany
 Download: PDF(433 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Implant medical research and tissue engineering both target the design of novel biomaterials for the improvement of human health and clinical applications. In order to develop improved surface coatings for hard tissue (bone) replacement materials and implant devices, we are developing micropatterned coatings consisting of polymer brushes. These are used as organic templates for the mineralization of calcium phosphate in order to improve adhesion of bone cells. First, we give a short account of the current state-of-the-art in this particular field of biomaterial development, while in the second part the preliminary results of cell culture experiments are presented, in which the biocompatibility of polymer brushes are tested on human mesenchymal stem cells.

Keywords polymer brush      ATRP      micropatterning      bone cell      cell adhesion     
Corresponding Author(s): VOLKMER Dirk,Email:dirk.volkmer@uni-ulm.de   
Issue Date: 05 June 2009
 Cite this article:   
Sabine A. LETSCHE,Annina M. STEINBACH,Manuela PLUNTKE, et al. Usage of polymer brushes as substrates of bone cells[J]. Front Mater Sci Chin, 2009, 3(2): 132-144.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0035-y
https://academic.hep.com.cn/foms/EN/Y2009/V3/I2/132
Fig.1  Topography or chemical structure? Schematic illustration of the substrates, which Charest et al. and Britland et al. used and images of the cells on the chemical and topographic patterns; is a fluorescence micrograph of Charest et al., 2006: The alignment of the osteoblast-like cells along the topographical structure is visible thanks to the DAPI blue nuclei, the chemical structure is arranged at the right angle; shows the results of Britland et al., 1996 as a scanning electron microscope image: here the cell is oriented along the chemical cues, which run across the linear topography at the right angle; images modified after Britland et al., 1996 and Charest et al., 2006 (Reproduced with kind permission from Ref. [], ? 1996 Elsevier and Ref. [], ? 2006 Elsevier)
Fig.2  Transmission electron micrograph showing the orientation of the hydroxyapatite crystals relative to collagen fibrils (Reprinted with permission from Ref. [], ? 2008 American Chemical Society)
Fig.3  Fabrication of micropatterned calcite films: Synthesis of poly(methacrylic acid) (PMAA) brushes via surface-initiated atom transfer radical polymerization (SI-ATRP) of photolithographically patterned substrates coated with ATRP initiator molecules; Directed deposition of metastable amorphous calcium carbonate (ACC) and a subsequent transformation of ACC into a micropatterned calcite film by thermal treatment []
Fig.4  Chemical structure of the obtained polymers
Fig.5  Differential interference contrast micrographs of photolithographically patterned PMAA brushes: image of four different pattern sizes; stripe pattern
Fig.6  3D topographic AFM images of patterned polymer brushes with different width of lines and polymers: PSBMA with 40 μm width; PSPMA with 10 μm width; PMAA with 2.5 μm width
Fig.7  Height profiles of patterned PMAA, PSBMA, and PSPMA brushes in air (solid line) and in water (dashed line) determined by AFM
Fig.8  Phase contrast light microscopy images of cell adhesion of patterned PSBMA brushes: hMSC cell culture between the patterned PSBMA brushes (day 4 after seeding), 40-fold magnification; hMSC cells between the PSBMA stripes (day 1 after seeding), 200-fold magnification
1 Ratner B D. The engineering of biomaterials exhibiting recognition and specificity. Journal of Molecular Recognition , 1996, 9: 617-625
doi: 10.1002/(SICI)1099-1352(199634/12)9:5/6<617::AID-JMR310>3.0.CO;2-D
2 Ratner B D, Hoffman A S, Schoen F J, . Biomaterials Science: A Multidisciplinary Endeavor. In: Ratner B D, Hoffman A S, Schoen F J, . Biomaterials Science — An Introduction to Materials in Medicine . 2nd ed. New York: Elsevier Academic Press, 2004, 1-9
3 Campbell A A, Fryxell G E, Linehan J C, . Surface-induced mineralization: A new method for producing calcium phosphate coatings. Journal of Biomedical Materials Research , 1996, 32: 111-118
doi: 10.1002/(SICI)1097-4636(199609)32:1<111::AID-JBM13>3.0.CO;2-P
4 Costa N, Maquis P M. Biomimetic processing of calcium phosphate coating. Medical Engineering & Physics , 1998, 20: 602-606
doi: 10.1016/S1350-4533(98)00056-3
5 Liu L, Zhang L, Ren B, . Preparation and characterization of collagen-hydroxyapatite composite used for bone tissue engineering scaffold. Artificial Cells Blood Substitutes and Immobilization Biotechnology , 2003, 31: 435-448
doi: 10.1081/BIO-120025414
6 James K, Levene H, Parsons J R, . Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. Biomaterials , 1999, 20: 2203-2212
doi: 10.1016/S0142-9612(99)00151-9
7 Crane G M, Ishaug S L, Mikos A. Bone tissue engineering. Nature Medicine , 1991, 1: 1322-1324
doi: 10.1038/nm1295-1322
8 Hench L L. Bioceramics: From concept to clinic. Journal of the American Ceramic Society , 1991, 74: 1487-1510
doi: 10.1111/j.1151-2916.1991.tb07132.x
9 Schoen F J, Hoffman A S. Implant and Device Failure. In: Ratner B D, Hoffman A S, Schoen F J, . Biomaterials Science — An Introduction to Materials in Medicine . 2nd ed. New York: Elsevier Academic Press, 2004, 760-765
10 Yim E K F, Leong K W. Significance of synthetic nanostructures in dictating cellular response. Nanomedicine: Nanotechnology, Biology and Medicine , 2005, 1: 10-21
doi: 10.1016/j.nano.2004.11.008
11 Goodman S L, Sims P A, Albrecht R M. Three-dimensional extracellular matrix textured biomaterials. Biomaterials , 1996, 17: 2087-2095
doi: 10.1016/0142-9612(96)00016-6
12 Zinger O, Zhao G, Schwartz Z, . Differential regulation of osteoblasts by substrate microstructural features. Biomaterials , 2005, 26: 1837-1847
doi: 10.1016/j.biomaterials.2004.06.035
13 Buser D, Schenk R K, Steinemann S, . Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research , 1991, 25: 889-902
doi: 10.1002/jbm.820250708
14 Wennerberg A, Albrektsson T, Johansson C, . Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials , 1996, 17: 15-22
doi: 10.1016/0142-9612(96)80750-2
15 Li D, Ferguson S J, Beutler T, . Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. Journal of Biomedical Materials Research , 2002, 60: 325-332
doi: 10.1002/jbm.10063
16 Cochran D L, Schenk R K, Lussi A, . Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research , 1998, 40: 1-11
doi: 10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
17 Faghihi S, Zhilyaev A P, Szpunar J A, . Nanostructuring of a titanium material by high-pressure torsion improves pre-osteoblast attachment. Advanced Materials , 2007, 19: 1069-1073
doi: 10.1002/adma.200602276
18 Yoshimoto H, Shin Y M, Terai H, . A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials , 2003, 24: 2077-2082
doi: 10.1016/S0142-9612(02)00635-X
19 Jin H-J, Chen J, Karageorgiou V, . Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials , 2004, 25: 1039-1047
doi: 10.1016/S0142-9612(03)00609-4
20 Alaerts J A, de Cupere V M, Moser S, . Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells. Biomaterials , 2001, 22: 1635-1642
doi: 10.1016/S0142-9612(00)00321-5
21 Britland S, Morgan H, Wojiak-Stodart B, . Synergistic and hierarchical adhesive and topographic guidance of BHK cells. Experimental Cell Research , 1996, 228: 313-325
doi: 10.1006/excr.1996.0331
22 Yu F, Muecklich F, Li P, . Articles from the microsymposium on polymer biomaterials: In vitro cell response to a polymer surface micropatterned by laser interference lithography. Biomacromolecules , 2005, 6: 1160-1167
doi: 10.1021/bm049324w
23 Zahor D, Radko A, Vago R, . Organization of mesenchymal stem cells is controlled by micropatterned silicon substrates. Materials Science and Engineering C , 2007, 27: 117-121
doi: 10.1016/j.msec.2006.03.005
24 Roach P, Eglin D, Rhode K, . Modern biomaterials: a review — bulk properties and implications of surface modifications. Journal of Materials Science Materials in Medicine , 2007, 18: 1263-1277
doi: 10.1007/s10856-006-0064-3
25 Kasemo B, Gold J. Implant surfaces and interface processes. Advances in Dental Research , 1999, 13: 8-20
doi: 10.1177/08959374990130011901
26 Ratner B D. Background Concepts. In: Ratner B D, Hoffman A S, Schoen F J, . Biomaterials Science — An Introduction to Materials in Medicine . 2nd ed. New York: Elsevier Academic Press, 2004, 237-237
27 Keselowsky B G, Collard D M, García A J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research , 2003, 66A: 247-259
doi: 10.1002/jbm.a.10537
28 Healy K E, Thomas C H, Rezania A, . Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials , 1996, 17: 195-208
doi: 10.1016/0142-9612(96)85764-4
29 Brock A, Chang E, Ho C-C, . Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir , 2003, 19: 1611-1617
doi: 10.1021/la026394k
30 Tugulu S, Arnold A, Sielaff I, . Protein-functionalized polymer brushes. Biomacromolecules , 2005, 6: 1602-1607
doi: 10.1021/bm050016n
31 Tugulu S, Silacci P, Stergiopulos N, . RGD-functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein andothelial cells. Biomaterials , 2007, 28: 2536-2546
doi: 10.1016/j.biomaterials.2007.02.006
32 Zapata P, Su J, García A J, . Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns. Biomacromolecules , 2007, 8: 1907-1917
doi: 10.1021/bm061134t
33 Charest J L, Eliason M T, García A J, . Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. Biomaterials , 2006, 27: 2487-2494
doi: 10.1016/j.biomaterials.2005.11.022
34 Lu H B, Ma C L, Cui H, . Controlled crystallization of calcium phosphate under stearic acid monolayers. Journal of Crystal Growth , 1995, 155: 120-125
doi: 10.1016/0022-0248(95)00229-4
35 de Groot K, Geesink R, Klein C P A T, . Plasma sprayed coatings of hydroxylapatite. Journal of Biomedical Materials Research , 1987, 21: 1375-1381
doi: 10.1002/jbm.820211203
36 Thomas K A, Kay J F, Cook S D, . The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implants materials. Journal of Biomedical Materials Research , 1987, 21: 1395-1414
doi: 10.1002/jbm.820211205
37 de Lange G L, Donath K. Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials , 1989, 10: 121-125
doi: 10.1016/0142-9612(89)90044-6
38 Ducheyne P, Hench L L, Kagan II A, . Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. Journal of Biomedical Materials Research , 1980, 14: 225-237
doi: 10.1002/jbm.820140305
39 Yang Y, Kim K-H, Ong J L. A review on calcium phosphate coatings using a sputtering process — an alternative to plasma spraying. Biomaterials , 2005, 26: 327-337
doi: 10.1016/j.biomaterials.2004.02.029
40 Li F, Feng Q L, Cui F Z, . A simple biomimetic method for calcium phosphate coating. Surface and Coatings Technology , 2002, 154: 88-93
doi: 10.1016/S0257-8972(01)01710-8
41 Ter Brugge P J, Wolke J G C, Jansen J A. Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells. Journal of Biomedical Materials Research , 2002, 60: 70-78
doi: 10.1002/jbm.10031
42 Mao C, Li H, Cui F, . The functionalization of titanium with EDTA to induce biomimetic mineralization of hydroxyapatite. Journal of Materials Chemistry , 1999, 9: 2573-2582
doi: 10.1039/a901309a
43 Zeng H, Lacefield W R. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the elects of various process parameters. Biomaterials , 2000, 21: 23-30
doi: 10.1016/S0142-9612(99)00128-3
44 Zhang W, Huang Z-L, Liao S-S, . Nucleation sites of calcium phosphate crystals during collagen mineralization. Journal of the American Ceramic Society , 2003, 86: 1052-1054
45 Boskey A L, Roy R. Cell culture systems for studies of bone and tooth mineralization. Chemical Reviews , 2008, 108: 4716-4733
doi: 10.1021/cr0782473
46 Casse O, Colombani O, Kita-Tokarczyk K, . Calcium phosphate mineralization beneath monolayers of poly(n-butylacrylate)-block-poly(acrylic acid) block copolymers. Faraday Discussions , 2008, 139: 1-20
doi: 10.1039/b716353c
47 Suzuki S, Whittaker M R, Gr?ndahl L, . Synthesis of soluble phosphate polymers by RAFT and their in vitro mineralization. Biomacromolecules , 2006, 7: 3178-3187
doi: 10.1021/bm060583q
48 Xu A-W, Ma Y, Coelfen H. Biomimetic mineralization. Journal of Materials Chemistry , 2007, 17: 415-449
doi: 10.1039/b611918m
49 Tsortos A, Nancollas G H. The role of polycarboxylic acids in calcium phosphate mineralization. Journal of Colloid and Interface Science , 2002, 250: 159-167
doi: 10.1006/jcis.2002.8323
50 Arias J L, Neira-Carrillo A, Arias J I, . Sulfated polymers in biological mineralization: a plausible source for bio-inspired engineering. Journal of Materials Chemistry , 2004, 14: 2154-2160
doi: 10.1039/b401396d
51 Arias J L, Fernández M S. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chemical Reviews , 2008, 108: 4475-4482
doi: 10.1021/cr078269p
52 He G, Gajjeraman S, Schultz D, . Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution. Biochemistry , 2005, 44: 16140-16148
doi: 10.1021/bi051045l
53 Hunter G K, Hauschka P V, Poole A R, . Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochemical Journal , 1996, 317: 59-64
54 Marsh M E. Polyanion-mediated mineralization-assembly and reoranization of acidic polysaccharides in the Golgi system of a coccolithophorid alga durino mineral deposition. Protoplasma , 1994, 177: 108-122
doi: 10.1007/BF01378985
55 Marsh M E. Polyanion-mediated mineralization — a kinetic analysis of the calcium-carrier hypothesis in the phytoflagellate Pleurochrysis carterae. Protoplasma , 1996, 190: 181-188
doi: 10.1007/BF01281317
56 Aizenberg J, Black A J, Whitesides G M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. Journal of the American Chemical Society , 1999, 121: 4500-4509
doi: 10.1021/ja984254k
57 Aizenberg J, Black A J, Whitesides G M. Control of crystal nucleation by patterned self-assembled monolayers. Nature , 1999, 398: 495-498
doi: 10.1038/19047
58 Politi Y, Arad T, Klein E, . Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science , 2004, 306: 1161-1164
doi: 10.1126/science.1102289
59 Aizenberg J, Muller D A, Grazul J L, . Direct fabrication of large micropattered single crystals. Science , 2003, 299: 1205-1208
doi: 10.1126/science.1079204
60 Volkmer D, Harms M, Gower L, . Morphosynthesis of nacre-type laminated CaCO3 thin films and coatings. Angewandte Chemie International Edition , 2005, 44: 639-644
doi: 10.1002/anie.200461386
61 Amos F F, Sharbaugh D M, Talham D R, . Formation of single-crystalline aragonite tablets/films via an amorphous precursor. Langmuir , 2007, 23: 1988-1994
doi: 10.1021/la061960n
62 Tugulu S, Harms M, Fricke M, . Polymer brushes as Ionotropic matrices for the directed fabrication of microstructured calcite thin films. Angewandte Chemie International Edition , 2006, 45: 7458-7461
doi: 10.1002/anie.200602382
63 de Las Heras Alarcón C, Farhan T, Osborne V L, . Bioadhesion at micro-patterned stimuli-responsive polymer brushes. Journal of Materials Chemistry , 2005, 15: 2089-2094
doi: 10.1039/b419142k
64 Senaratne W, Andurzzi L, Ober C K. Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules , 2005, 6: 2427-2448
doi: 10.1021/bm050180a
65 Konradi R, Ruehe J. Interaction of poly(methacrylic acid) brushes with metal ions: swelling properties. Macromolecules , 2005, 38: 4345-4354
doi: 10.1021/ma0486804
66 Ruehe J, Ballauff M, Biesalski M, . Polyelectrolyte brushes. Advances in Polymer Science , 2004, 165: 79-150
67 Edmondson S, Osborne V L, Huck W T S. Polymer brushes via surface-initiated polymerizations. Chemical Society Reviews , 2004, 33: 14-22
doi: 10.1039/b210143m
68 Prucker O, Konradi R, Schimmel M, . Photochemical strategies for the preparation and microstructuring of densely grafted polymer brushes on planar surfaces. In: Advincula R C, Brittain W J, Caster K C, . Polymer Brushes. Wiley VHC , 2004, 449-469
69 Zhou F, Huck W T S. Surface grafted polymer brushes as ideal building blocks for “smart” surfaces. Physical Chemistry Chemical Physics , 2006, 8: 3815-3823
doi: 10.1039/b606415a
70 Barentin C, Muller P, Joanny J F. Polymer brushes formed by end-capped poly(ethylene oxide) (PEO) at the air-water interface. Macromolecules , 1998, 31: 2198-2211
doi: 10.1021/ma971665x
71 Bug A L R, Cates M E, Safran S A, . Theory of size distribution of associating polymer aggregates. I. Spherical aggregates. Journal of Chemical Physics , 1987, 87: 1824-1833
doi: 10.1063/1.453195
72 Pyun J, Kowalewski T, Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization. Macromolecular Rapid Communications , 2003, 24: 1043-1059
doi: 10.1002/marc.200300078
73 Rowe-Konopacki M D, Boyes S G. Synthesis of surface initiated diblock copolymer brushes from flat silicon substrates utilizing the RAFT polymerization technique. Macromolecules , 2007, 40: 879-888
doi: 10.1021/ma0623340
74 Luzinov I, Minko S, Senkovsky V, . Synthesis and behavior of the polymer covering on a solid surface. 3. Morphology and mechanism of formation of grafted polystyrene layers on the glass surface. Macromolecules , 1998, 31: 3945-3952
doi: 10.1021/ma971413w
75 Matyjaszewski K, Miller P J, Shukla N, . Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules , 1999, 32: 8716-8724
doi: 10.1021/ma991146p
76 Jordan R, Ulman A. Surface initiated living cationic polymerization of 2-oxazolines. Journal of the American Chemical Society , 1998, 120: 243-247
doi: 10.1021/ja973392r
77 Limpoco F T, Advincula R C, Perry S S. Solvent dependent friction force response of polystyrene brushes prepared by surface initiated polymerization. Langmuir , 2007, 23: 12196-12201
doi: 10.1021/la701272a
78 Tugulu S, Barbey R, Harms M, . Synthesis of poly(methacrylic acid) brushes via surface-initiated atom transfer radical polymerization of sodium methacrylate and their use as substrates for the mineralization of calcium carbonate. Macromolecules , 2007, 40: 168-177
doi: 10.1021/ma060739e
79 Zhou F, Liu S J, Wang B, . Preparation of end grafted polyacrylonitrile brushes through surface confined radical chain transfer reaction. Chinese Chemical Letters , 2003, 14: 47-50
80 Treat N D, Ayres N, Boyes S G, . A facile route to poly(acrylic acid) brushes using atom transfer radical polymerization. Macromolecules , 2006, 39: 26-29
doi: 10.1021/ma052001n
81 Zhao B, Brittain W J. Synthesis of polystyrene brushes on silicate substrates via carbocationic polymerization from self-assembled monolayers. Macromolecules , 2000, 33: 342-348
doi: 10.1021/ma9910181
82 Advincula R, Zhou Q, Park M, . Polymer brushes by living anionic surface initiated polymerization on flat silicon (SiOx) and gold surfaces: Homopolymers and block copolymers. Langmuir , 2002, 18: 8672-8684
doi: 10.1021/la025962t
83 Buchmeiser M R, Sinner F, Mupa M, . Ring-opening metathesis polymerization for the preparation of surface-grafted polymer supports. Macromolecules , 2000, 33: 32-39
doi: 10.1021/ma9913966
84 Kong B, Lee J K, Choi I S. Surface-initiated, ring-opening metathesis polymerization: Formation of diblock copolymer brushes and solvent-dependent morphological changes. Langmuir , 2007, 23: 6761-6765
doi: 10.1021/la700568j
85 Wang J-S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society , 1995, 117: 5614-5615
doi: 10.1021/ja00125a035
86 Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chemical Reviews , 2001, 101: 2921-2990
doi: 10.1021/cr940534g
87 Davis K A, Matyjaszewski K. Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers. Macromolecules , 2000, 33: 4039-4047
doi: 10.1021/ma991826s
88 Shah R R, Merreceyes D, Husemann M, . Using atom transfer radical polymerization to amplify monolayers of initiators patterned by microcontact printing into polymer brushes for pattern transfer. Macromolecules , 2000, 33: 597-605
doi: 10.1021/ma991264c
89 Prucker O, Schimmel M, Tovar G, . Microstructuring of molecularly thin polymer layers by photolithography. Advanced Materials , 1998, 10: 1073-1077
doi: 10.1002/(SICI)1521-4095(199810)10:14<1073::AID-ADMA1073>3.0.CO;2-D
90 Schmelmer U, Jordan R, Geyer W, . Surface-initiated polymerization on self-assembled monolayers: Amplification of patterns on the micrometer and nanometer. Angewandte Chemie International Edition , 2003, 42: 559-562
doi: 10.1002/anie.200390161
91 Schmelmer U, Paul A, Kueller A, . Nanostructured polymer brushes. Small , 2007, 3: 459-465
doi: 10.1002/smll.200600528
92 Schaeffler A, Buechler C. Concise review: Adipose tissue-derived stromal cells — basic and clinical implications for novel cell-based therapies. Stem Cells , 2007, 25: 818-827
doi: 10.1634/stemcells.2006-0589
93 Caplan A I. Mesenchymal stem cells. In: Lanza R P. Handbook of Stem Cells . Amsterdam: Academic Press, 2004, 299-308
doi: 10.1016/B978-012436643-5/50118-8
94 Pittenger M F, Mbalaviele G, Black M, . Mesenchymal stem cells. In: Koller M R, Palsson B O, Masters J R W. Human Cell Culture. Kluwer Academic Publishers , 2001, 189-207
95 Pittenger M F, Mackay A M, Beck S C, . Multilineage potential of adult human mesenchymal stem cells. Science , 1999, 284: 143-147
doi: 10.1126/science.284.5411.143
96 Wakitani S, Saito T, Caplan A I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle and Nerve , 1995, 18: 1417-1426
doi: 10.1002/mus.880181212
97 Masci G, Bontempo D, Tiso N, . Atom transfer radical polymerization of potassium 3-sulfopropyl methacrylate: Direct synthesis of amphiphilic block copolymers with methyl methacrylate. Macromolecules , 2004, 37: 4464-4473
doi: 10.1021/ma0497254
98 Azzaroni O, Brown A A, Huck W T S. UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angewandte Chemie International Edition , 2006, 45: 1770-1774
doi: 10.1002/anie.200503264
99 Dalsin J L, Messersmith P B. Bioinspired antifouling polymers. Materials Today , 2005, 8: 38-46
doi: 10.1016/S1369-7021(05)71079-8
100 Singh N, Cui X, Boland T, . The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion. Biomaterials , 2007, 28: 763-771
doi: 10.1016/j.biomaterials.2006.09.036
101 Tugulu S, Klok H-A. Stability and non-fouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules , 2008, 9: 906-912
doi: 10.1021/bm701293g
102 Chen C S, Mrksich M, Huang S, . Geometric control of cell life and death. Science , 1997, 276: 1425-1428
doi: 10.1126/science.276.5317.1425
103 Singhvi R, Kumar A, Lopez G P, . Engineering cell shape and function. Science , 1994, 264: 696-698
doi: 10.1126/science.8171320
104 Cheng G, Zhang Z, Chen S, . Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials , 2007, 28: 4192-4199
doi: 10.1016/j.biomaterials.2007.05.041
105 Zhang Z, Chen S, Chang Y, . Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B , 2006, 110: 10799-10804
doi: 10.1021/jp057266i
106 Feng W, Nieh M-P, Zhu S, . Characterization of protein resistant, grafted methacrylate polymer layers bearing oligo(ethylene glycol) and phosphorylcholine side chains by neutron reflectometry. Biointerphases , 2007, 2: 34-43
doi: 10.1116/1.2711705
107 Chang Y, Chen S, Zhang Z, . Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir , 2006, 22: 2222-2226
doi: 10.1021/la052962v
108 Iwata R, Suk-In P, Hoven V P, . Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulation. Biomacromolecules , 2004, 5: 2308-2314
doi: 10.1021/bm049613k
109 Zhang Z, Chao T, Chen S, . Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir , 2006, 22: 10072-10077
doi: 10.1021/la062175d
110 Zhao G, Schwartz Z, Wieland M, . High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research A , 2005, 74: 49-58
doi: 10.1002/jbm.a.30320
111 Mendelsohn J D, Yang S Y, Hiller J A, . Rational design of cytophilic and cytophabic polyelectrolyte multilayer thin films. Biomacromolecules , 2003, 4: 96-106
doi: 10.1021/bm0256101
[1] Lulu WEI, Beibei LU, Lei LI, Jianning WU, Zhiyong LIU, Xuhong GUO. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers[J]. Front. Mater. Sci., 2017, 11(3): 223-232.
[2] Qing-Yuan MENG, Toshihiro AKAIKE. Maintenance and induction of murine embryonic stem cell differentiation using E-cadherin-Fc substrata without colony formation[J]. Front Mater Sci, 2013, 7(1): 51-61.
[3] Zong-Jian LIU, Yan-Li LIANG, Fang-Fang GENG, Fang LV, Rong-Ji DAI, Yu-Kui ZHANG, Yu-Lin DENG. Preparation of poly(N-isopropylacrylamide) brush grafted silica particles via surface-initiated atom transfer radical polymerization used for aqueous chromatography[J]. Front Mater Sci, 2012, 6(1): 60-68.
[4] Xi LIU, Ying WANG, Jin HE, Xiu-Mei WANG, Fu-Zhai CUI, Quan-Yuan XU. Various fates of neuronal progenitor cells observed on several different chemical functional groups[J]. Front Mater Sci, 2011, 5(4): 358-366.
[5] Xian-Kai LIN, Xia FENG, Li CHEN, Yi-Ping ZHAO. Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization[J]. Front Mater Sci Chin, 2010, 4(4): 345-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed