|
|
Thermal and tensile properties of Si/Ge core-shell
and superlattice nanowires |
Hai-jun SHEN, |
School of Aeronautics
& Astronautics, Nanjing University of Aeronautics & Astronautics,
Nanjing 210016, China; |
|
|
Abstract The Stillinger-Weber potential-based MD (Molecular dynamics) method is used to simulate the heating-up and axial tension of Si/Ge core-shell and superlattice nanowires; according to the simulative results, the differences in their thermal and mechanical properties are discussed. The results show the following: (1) The Si/Ge superlattice nanowire is more thermally stable than the core-shell one, and their melting points are 1160 and 1320 K, respectively. (2) The Si/Ge core-shell nanowire has higher elastic module than the super-lattice one. (3) Under tension, the super-lattice nanowire has better antideformation capability than the core-shell one but has comparative antiloading capability.
|
Keywords
core-shell
superlattice
Si/Ge nanowires
thermal stability
tensile properties
|
Issue Date: 05 December 2009
|
|
|
Zakharov N D, Werner P, Gerth G, et al. Growth phenomena of Si and Si/Ge nanowires onSi (111) by molecular beam epitaxy. Journalof Crystal Growth, 2006, 290: 6–10
doi: 10.1016/j.jcrysgro.2005.12.096
|
|
Fan H J, Werner P, Zacharias M. Semiconductor nanowires: From self-organization to patternedgrowth. Small, 2006, 2(6): 700–717
doi: 10.1002/smll.200500495
|
|
Yu D P, Bai Z G, Ding Y, et al. Nanoscale silicon wires synthesized using simplephysical evaporation. Applied Physics Letters, 1998, 72: 3458–3460
doi: 10.1063/1.121665
|
|
Hochbaum A I, Fan R, He R, et al. Controlled growth of Si nanowire arrays fordevice integration. Nano Letters, 2005, 5(3): 457–460
doi: 10.1021/nl047990x
|
|
Menon M, Srivastava D, Ponomareva I, et al. Nanomechanics of silicon nanowires. Physical Review B, 2004, 70(12): 125313
doi: 10.1103/PhysRevB.70.125313
|
|
Mingo N, Yang L, Li D, et al. Predicting the thermal conductivity of Si andGe nanowires. Nano Letters, 2003, 3(12): 1713–1716
doi: 10.1021/nl034721i
|
|
Lauhon L J, Gudiksen M S, Wang D L, et al. Epitaxial core-shell and core-multishell nanowireheterostructures. Nature, 2002, 420(6911): 57–60
doi: 10.1038/nature01141
|
|
Pan L, Lew K-K, Redwing J M, et al. Study on axial and radial heterostructures ofSi-Ge and Si-SiGe nanowires. Microscopyand Microanalysis, 2005, 11(Suppl 2): 1722–1723
doi: 10.1017/S1431927605507505
|
|
Hanke M, Eisenschmidt C. Elastic strain relaxationin axial Si/Ge whisker heterostructures. Physical Review B, 2007, 75(16): 161303
doi: 10.1103/PhysRevB.75.161303
|
|
Shen H J. Creating carbon nanotube and researching into its mechanics propertiesby HyperChem. Computer & Applied Chemistry, 2004, 21(3): 485–487
|
|
Leach A R. Molecular Modeling. England: Addison Wesley Longman Limited, 1996
|
|
Shen H J. The compressive mechanical properties of C60 and endohedral M@C60 (M=Si, Ge) fullerene molecules. Materials Letters, 2006, 60(16): 2050–2054
doi: 10.1016/j.matlet.2005.12.077
|
|
Shen H J. MD simulations on the melting and compression of C, SiC and Si nanotubes. Journal of Materials Science, 2007, 41: 1063
|
|
Karimi M, Kaplan T. Ge segregation at Si-Ge(001)stepped surface. Physical Review B, 1993, 47: 9931–9932
doi: 10.1103/PhysRevB.47.9931
|
|
Stillimger F H, Weber T A. Computer simulation of localorder in condensed phases of silicon. PhysicalReview B, 1985, 31: 5262
doi: 10.1103/PhysRevB.31.5262
|
|
Nordlund K, Ghaly M, Averback R S. Defect production in collision cascades in elementalsemiconductors and fcc metals. PhysicalReview B, 1998, 57: 7556
doi: 10.1103/PhysRevB.57.7556
|
|
Runyan W R. Silicon and silicon alloys. In: ConciseEncyclopedia of Chemical Technology (4th ed.). New York: Wiely, 1999, 1809–1811
|
|
Adams J H, Thomas D. Germanium and germanium compounds. In: Concise Encyclopedia of Chemical Technology(4th ed.). New York: Wiley, 1999, 996–997
|
|
Yu G Z. Properties of Silicon and Germanium. Beijing: National Defense Press, 2002 (in Chinese)
|
|
Komanduri R, Chandrasekarana N, Raffb L M. Molecular dynamic simulations of uniaxial tension atnanoscale of semiconductor materials for micro-electro-mechanicalsystems (MEMS) applications. MaterialsScience and Engineering A, 2003, 340: 58–67
doi: 10.1016/S0921-5093(02)00156-9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|