Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2009, Vol. 3 Issue (4) : 415-420    https://doi.org/10.1007/s11706-009-0061-9
Research articles
Thermal and tensile properties of Si/Ge core-shell and superlattice nanowires
Hai-jun SHEN,
School of Aeronautics & Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;
 Download: PDF(279 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Stillinger-Weber potential-based MD (Molecular dynamics) method is used to simulate the heating-up and axial tension of Si/Ge core-shell and superlattice nanowires; according to the simulative results, the differences in their thermal and mechanical properties are discussed. The results show the following: (1) The Si/Ge superlattice nanowire is more thermally stable than the core-shell one, and their melting points are 1160 and 1320 K, respectively. (2) The Si/Ge core-shell nanowire has higher elastic module than the super-lattice one. (3) Under tension, the super-lattice nanowire has better antideformation capability than the core-shell one but has comparative antiloading capability.
Keywords core-shell      superlattice      Si/Ge nanowires      thermal stability      tensile properties      
Issue Date: 05 December 2009
 Cite this article:   
Hai-jun SHEN. Thermal and tensile properties of Si/Ge core-shell and superlattice nanowires[J]. Front. Mater. Sci., 2009, 3(4): 415-420.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0061-9
https://academic.hep.com.cn/foms/EN/Y2009/V3/I4/415
Zakharov N D, Werner P, Gerth G, et al. Growth phenomena of Si and Si/Ge nanowires onSi (111) by molecular beam epitaxy. Journalof Crystal Growth, 2006, 290: 6–10

doi: 10.1016/j.jcrysgro.2005.12.096
Fan H J, Werner P, Zacharias M. Semiconductor nanowires: From self-organization to patternedgrowth. Small, 2006, 2(6): 700–717

doi: 10.1002/smll.200500495
Yu D P, Bai Z G, Ding Y, et al. Nanoscale silicon wires synthesized using simplephysical evaporation. Applied Physics Letters, 1998, 72: 3458–3460

doi: 10.1063/1.121665
Hochbaum A I, Fan R, He R, et al. Controlled growth of Si nanowire arrays fordevice integration. Nano Letters, 2005, 5(3): 457–460

doi: 10.1021/nl047990x
Menon M, Srivastava D, Ponomareva I, et al. Nanomechanics of silicon nanowires. Physical Review B, 2004, 70(12): 125313

doi: 10.1103/PhysRevB.70.125313
Mingo N, Yang L, Li D, et al. Predicting the thermal conductivity of Si andGe nanowires. Nano Letters, 2003, 3(12): 1713–1716

doi: 10.1021/nl034721i
Lauhon L J, Gudiksen M S, Wang D L, et al. Epitaxial core-shell and core-multishell nanowireheterostructures. Nature, 2002, 420(6911): 57–60

doi: 10.1038/nature01141
Pan L, Lew K-K, Redwing J M, et al. Study on axial and radial heterostructures ofSi-Ge and Si-SiGe nanowires. Microscopyand Microanalysis, 2005, 11(Suppl 2): 1722–1723

doi: 10.1017/S1431927605507505
Hanke M, Eisenschmidt C. Elastic strain relaxationin axial Si/Ge whisker heterostructures. Physical Review B, 2007, 75(16): 161303

doi: 10.1103/PhysRevB.75.161303
Shen H J. Creating carbon nanotube and researching into its mechanics propertiesby HyperChem. Computer & Applied Chemistry, 2004, 21(3): 485–487
Leach A R. Molecular Modeling. England: Addison Wesley Longman Limited, 1996
Shen H J. The compressive mechanical properties of C60 and endohedral M@C60 (M=Si, Ge) fullerene molecules. Materials Letters, 2006, 60(16): 2050–2054

doi: 10.1016/j.matlet.2005.12.077
Shen H J. MD simulations on the melting and compression of C, SiC and Si nanotubes. Journal of Materials Science, 2007, 41: 1063
Karimi M, Kaplan T. Ge segregation at Si-Ge(001)stepped surface. Physical Review B, 1993, 47: 9931–9932

doi: 10.1103/PhysRevB.47.9931
Stillimger F H, Weber T A. Computer simulation of localorder in condensed phases of silicon. PhysicalReview B, 1985, 31: 5262

doi: 10.1103/PhysRevB.31.5262
Nordlund K, Ghaly M, Averback R S. Defect production in collision cascades in elementalsemiconductors and fcc metals. PhysicalReview B, 1998, 57: 7556

doi: 10.1103/PhysRevB.57.7556
Runyan W R. Silicon and silicon alloys. In: ConciseEncyclopedia of Chemical Technology (4th ed.). New York: Wiely, 1999, 1809–1811
Adams J H, Thomas D. Germanium and germanium compounds. In: Concise Encyclopedia of Chemical Technology(4th ed.). New York: Wiley, 1999, 996–997
Yu G Z. Properties of Silicon and Germanium. Beijing: National Defense Press, 2002 (in Chinese)
Komanduri R, Chandrasekarana N, Raffb L M. Molecular dynamic simulations of uniaxial tension atnanoscale of semiconductor materials for micro-electro-mechanicalsystems (MEMS) applications. MaterialsScience and Engineering A, 2003, 340: 58–67

doi: 10.1016/S0921-5093(02)00156-9
[1] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[2] Yonghui LIU,Jun MA,Shengmin ZHANG. Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions[J]. Front. Mater. Sci., 2015, 9(4): 392-396.
[3] Vijayshankar ASOKAN, Pawel KOSINSKI, Tore SKODVIN, Velaug MYRSETH. Characterization of carbon black modified by maleic acid[J]. Front Mater Sci, 2013, 7(3): 302-307.
[4] Kui-Lin DENG, Yu-Bo GOU, Li-Rong DONG, Qian LI, Li-Bin BAI, Ting GAO, Chun-Yuan HUANG, Shu-Liang WANG. Drug release behaviors of a pH/temperature sensitive core-shelled bead with alginate and poly(N-acryloyl glycinates)[J]. Front Mater Sci Chin, 2010, 4(4): 353-358.
[5] YANG Dong-zhi, LONG Yu-hua, NIE Jun. Release of lysozyme from electrospun PVA/lysozyme-gelatin scaffolds[J]. Front. Mater. Sci., 2008, 2(3): 261-265.
[6] LIN Zhihui, WU Wenhui, WANG Jianquan, JIN Xin. Swelling behaviors, tensile properties and thermodynamic interactions in APS/HEMA copolymeric hydrogels[J]. Front. Mater. Sci., 2007, 1(4): 427-431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed