Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2012, Vol. 6 Issue (3) : 259-267    https://doi.org/10.1007/s11706-012-0176-2
RESEARCH ARTICLE
β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro
Hui-Yun ZHOU(), Ling-Juan JIANG, Yan-Ping ZHANG, Jun-Bo LI
The Chemical Engineering & Pharmaceutics College, Henan University of Science and Technology, Luoyang 471003, China
 Download: PDF(344 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, the optimal clathration condition was investigated for the preparation of aspirin–β-cyclodextrin (Asp--β-CD) inclusion complex using design of experiment (DOE) methodology. A 3-level, 3-factor Box--Behnken design with a total of 17 experimental runs was used. The Asp--β-CD inclusion complex was prepared by saturated solution method. The influence on the embedding rate was investigated, including molar ratio of β-CD to Asp, clathration temperature and clathration time, and the optimum values of such three test variables were found to be 0.82, 49°C and 2.0 h, respectively. The embedding rate could be up to 61.19%. The formation of the bonding between--COOH group of Asp and O--H group of β-CD might play an important role in the process of clathration according to FT-IR spectra. Release kinetics of Asp from inclusion complex was studied for the evaluation of drug release mechanism and diffusion coefficients. The results showed that the drug release from matrix occurred through Fickian diffusion mechanism. The cumulative release of Asp reached only 40% over 24 h, so the inclusion complex could potentially be applied as a long-acting delivery system.

Keywords β-cyclodextrin (β-CD)      aspirin (Asp)      saturated solution method      Box--Behnken design      release kinetics     
Corresponding Author(s): ZHOU Hui-Yun,Email:zhouhuiyun@hotmail.com   
Issue Date: 05 September 2012
 Cite this article:   
Hui-Yun ZHOU,Ling-Juan JIANG,Jun-Bo LI, et al. β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro[J]. Front Mater Sci, 2012, 6(3): 259-267.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-012-0176-2
https://academic.hep.com.cn/foms/EN/Y2012/V6/I3/259
VariableRange and levels
Low level (-1)Center level (0)High level (+1)
x10.67 (1∶1.5)0.83 (1∶1.2)1.00 (1∶1)
x2405060
x31.01.52.0
Tab.1  Experimental range and levels of independent variables
Batch numberPatternx1x2x3Embedding rate /%
ActualPredictedResidual
No. 10++0.83602.058.0552.755.3
No. 20--0.83401.043.3648.66-5.3
No. 30+-0.83601.055.2453.351.89
No. 4-0+0.67502.045.1246.74-1.62
No. 50000.83501.558.4858.480.00
No. 6-+00.67601.525.6929.38-3.69
No. 70000.83501.558.4858.480.00
No. 8++01.00601.535.9439.45-3.51
No. 9+-01.00401.525.3621.683.68
No. 10-0-0.67501.047.2045.421.78
No. 110-+0.83402.050.5352.43-1.9
No. 120000.83501.558.4858.480.00
No. 13+0-1.00501.041.5839.961.62
No. 14--00.67401.545.6542.123.51
No. 150000.83501.558.4858.480.00
No. 16+0+1.00502.040.0341.81-1.78
No. 170000.83501.558.4858.480.00
Tab.2  Design matrix in the Box–Behnken model, observed response and predicted values
Fig.1  Content data of Asp of the inclusion complex.
SourceSum of squaresDegree of freedomMean squareF-valueP-valueProb>F
Regression1873.749208.1911.500.0020
x153.87153.872.980.1281
x212.58112.580.690.4320
x35.0415.040.280.6140
x1x2233.021233.0212.880.0089
x1x30.07010.0703.881E-0030.9521
x2x34.7514.750.260.6241
x121191.2111191.2165.83<0.0001
x22304.751304.7516.840.0046
x3213.83113.830.760.4110
Linear1928.929214.32
Quadratic126.67342.22
Residual126.67718.10
Lack-of-fit126.67342.22
Adjust R20.8553
R20.9367
Tab.3  ANOVA analysis for the BBD design
VariablesCofficient based on coded valuedfStandard error95%CI Low95%CI HighCofficient based on actual value
Intercept58.4911.9053.9962.99-385.37
x1-2.6011.50-6.100.96782.33
x21.2511.50-2.304.815.10
x30.7911.50-2.764.35-10.63
x1x27.6312.132.6012.664.63
x1x30.1312.13-4.905.161.61
x2x3-1.0912.13-6.123.94-0.22
x12-16.8212.07-21.71-11.92-617.81
x22-8.5112.07-13.41-3.61-0.09
x321.8112.07-3.096.717.25
Tab.4  Regression analysis for the BBD design
Fig.2  The effects of mutual interactions between molar ratio and temperature on embedding rate.
Fig.3  The effects of mutual interactions between molar ratio and time on embedding rate.
Fig.4  The effects of mutual interactions between temperature and time on embedding rate.
Fig.5  FT-IR spectra of β-CD (a), physical mixture (b), inclusion complex (c), and Asp (d).
Fig.6  Cumulative release of Asp from different samples in pH 6.8 PBS at 37°C (date shown were the mean±S.D., = 3).
ModelR2kn
Fickian release0.92476.0895-
Non-Fickian release0.8609-0.9528
Tab.5  Results from kinetics of drug release for different models
Fig.7  Cumulative percentage release . square root of time in hours.
Fig.8  Logarithm of cumulative percentage release . logarithm of time in hours.
1 Watala C, Golanski J, Pluta J, . Reduced sensitivity of platelets from type 2 diabetic patients to acetylsalicylic acid (aspirin) — its relation to metabolic control. Thrombosis Research , 2004, 113(2): 101-113
doi: 10.1016/j.thromres.2003.12.016
2 Takahashi S, Ushida M, Komine R, . Platelet responsiveness to in vitro aspirin is independent of COX-1 and COX-2 protein levels and polymorphisms. Thrombosis Research , 2008, 121(4): 509-517
doi: 10.1016/j.thromres.2007.05.017
3 Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. Journal of Inclusion Phenomena and Macrocyclic Chemistry , 2008, 62(1-2): 23-42
doi: 10.1007/s10847-008-9456-y
4 Aswathy S, Avadhani G S, Suji S, . Synthesis of β-cyclodextrin functionalized gold nanoparticles for the selective detection of Pb2+ ions from aqueous solution. Frontiers of Materials Science , 2012, 6(2): 168-175
doi: 10.1007/s11706-012-0165-5
5 de Castro A D, Silva N P, Cury B S F, . A new approach to the granulation of β-cyclodextrin inclusion complexes. Chemical Engineering Journal , 2010, 164(2-3): 316-321
doi: 10.1016/j.cej.2010.05.031
6 Mohammadi A, Manteghian M, Mirzaei M. Effect of β-cyclodextrin on dissolution of methane in water. Chemical Engineering Research and Design , 2011, 89(4): 421-427
doi: 10.1016/j.cherd.2010.07.011
7 Bencini M, Ranucci E, Ferruti P, . Preparation and in vitro evaluation of the antiviral activity of the Acyclovir complex of a β-cyclodextrin/poly(amidoamine) copolymer. Journal of Controlled Release , 2008, 126(1): 17-25
doi: 10.1016/j.jconrel.2007.11.004
8 Bonenfant D, Niquette P, Mimeault M, . UV-VIS and FTIR spectroscopic analyses of inclusion complexes of nonylphenol and nonylphenol ethoxylate with β-cyclodextrin. Water Research , 2009, 43(14): 3575-3581
doi: 10.1016/j.watres.2009.05.010
9 Li J S, Xiao H N, Li J H, . Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers. International Journal of Pharmaceutics , 2004, 278(2): 329-342
doi: 10.1016/j.ijpharm.2004.03.026
10 Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Advanced Drug Delivery Reviews , 1999, 36(1): 101-123
doi: 10.1016/S0169-409X(98)00057-X
11 Dubes A, Parrot-Lopez H, Abdelwahed W, . Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics , 2003, 55(3): 279-282
doi: 10.1016/S0939-6411(03)00020-1
12 Memi?o?lu E, Bochot A, Sen M, . Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. International Journal of Pharmaceutics , 2003, 251(1-2): 143-153
13 Pesek C A, Warthesen J J. Photodegradation of carotenoids in a vegetable juice system. Journal of Food Science , 1987, 52(3): 744-746
doi: 10.1111/j.1365-2621.1987.tb06717.x
14 Du Y Z, Xu J G, Wang L, . Preparation and characteristics of hydroxypropyl-β-cyclodextrin polymeric nanocapsules loading nimodipine. European Polymer Journal , 2009, 45(5): 1397-1402
doi: 10.1016/j.eurpolymj.2009.01.031
15 Szejtli J, Szente L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics , 2005, 61(3): 115-125
doi: 10.1016/j.ejpb.2005.05.006
16 He A M, Fan J P, Lin S M.Study on the optimum preparation of Asp-β-cyclodextrin inclusion. Journal of Fuqing Branch of Fujian Normal University , 2010, (5): 35-41 (in Chinese)
17 Zhang X-Y, Qiao H, Ni J-M. Experimental study on the ASA-β-cyclodextrin inclusion complexes. Journal of Lanzhou University (Medical Sciences) , 2005, 31(2): 17-19
18 Misiuk W, Zalewska M. Investigation of inclusion complex of trazodone hydrochloride with hydroxypropyl-β-cyclodextrin. Carbohydrate Polymers , 2009, 77(3): 482-488
doi: 10.1016/j.carbpol.2009.01.033
19 Aslan N, Cebeci Y. Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel , 2007, 86(1-2): 90-97
doi: 10.1016/j.fuel.2006.06.010
20 Yetilmezsoy K, Demirel S, Vanderbei R J. Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. Journal of Hazardous Materials , 2009, 171(1-3): 551-562
doi: 10.1016/j.jhazmat.2009.06.035
21 Guo C, Stine K J, Kauffman J F, . Assessment of the influence factors on in vitro testing of nasal sprays using Box-Behnken experimental design. European Journal of Pharmaceutical Sciences , 2008, 35(5): 417-426
doi: 10.1016/j.ejps.2008.09.001
22 Khajeh M. Optimization of process variables for essential oil components from Satureja hortensis by supercritical ?uid extraction using Box-Behnken experimental design. The Journal of Supercritical Fluids , 2011, 55(3): 944-948
doi: 10.1016/j.supflu.2010.10.017
23 Zhou H Y, Chen X G, Kong M, . Preparation of chitosan-based thermosensitive hydrogels for drug delivery. Journal of Applied Polymer Science , 2009, 112(3): 1509-1515
doi: 10.1002/app.29721
24 Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences , 1963, 52(12): 1145-1149
doi: 10.1002/jps.2600521210
25 Ritger P L, Peppas N A. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release , 1987, 5(1): 23-36
doi: 10.1016/0168-3659(87)90034-4
26 Raval A, Parikh J, Engineer C. Dexamethasone eluting biodegradable polymeric matrix coated stent for intravascular drug delivery. Chemical Engineering Research and Design , 2010, 88(11): 1479-1484
doi: 10.1016/j.cherd.2010.03.007
27 Singh B, Sharma V, Chauhan D. Gastroretentive floating sterculia-alginate beads for use in antiulcer drug delivery. Chemical Engineering Research and Design , 2010, 88(8): 997-1012
doi: 10.1016/j.cherd.2010.01.017
[1] Hui-Yun ZHOU,Pei-Pei CAO,Jie ZHAO,Zhi-Ying WANG,Jun-Bo LI,Fa-Liang ZHANG. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres[J]. Front. Mater. Sci., 2014, 8(4): 373-382.
[2] B. ASWATHY, G. S. AVADHANI, S. SUJI, G. SONY. Synthesis of β-cyclodextrin functionalized gold nanoparticles for the selective detection of Pb2+ ions from aqueous solution[J]. Front Mater Sci, 2012, 6(2): 168-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed