Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 56-65    https://doi.org/10.1007/s11706-016-0320-5
RESEARCH ARTICLE
Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater
Minh Thi TRAN1,*(),Thi Huyen Trang NGUYEN1,Quoc Trung VU2,Minh Vuong NGUYEN3
1. Faculty of Physics, Hanoi National University of Education, 136-Xuanthuy Street, Caugiay District, Hanoi, Vietnam
2. Faculty of Chemistry, Hanoi National University of Education, 136-Xuanthuy Street, Caugiay District, Hanoi, Vietnam
3. Department of Physics, Quynhon University, 170 An Duong Vuong, Quynhon, Vietnam
 Download: PDF(1364 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The research results of poly(1-naphthylamine)/Fe3O4 (PNA/Fe3O4) nanocomposites synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. XRD patterns and TEM images showed that the Fe3O4 grain size varied from 13 to 20 nm. The results of Raman spectral analysis showed that PNA participated in part of the PNA/Fe3O4 composite samples. The grain size of PNA/Fe3O4 composite samples is about 25--30 nm measured by SEM. The results of vibrating sample magnetometer measurements at room temperature showed that the saturation magnetic moment of PNA/Fe3O4 samples decreased from 63.13 to 43.43 emu/g, while the PNA concentration increased from 5% to 15%. The nitrogen adsorption--desorption isotherm of samples at 77 K at a relative pressure P/P0 of about 1 was studied in order to investigate the surface and porous structure of nanoparticles by the BET method. Although the saturation magnetic moments of samples decreased with the polymer concentration increase, the arsenic adsorption capacity of the PNA/Fe3O4 sample with the PNA concentration of 5% is better than that of Fe3O4 in a solution with pH= 7. In the solution with pH>14, the arsenic adsorption of magnetic nanoparticles is insignificant.

Keywords poly(1-naphthylamin)/Fe3O4 nanocomposite      magnetization      arsenic adsorption     
Corresponding Author(s): Minh Thi TRAN   
Online First Date: 12 January 2016    Issue Date: 15 January 2016
 Cite this article:   
Minh Thi TRAN,Thi Huyen Trang NGUYEN,Quoc Trung VU, et al. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater[J]. Front. Mater. Sci., 2016, 10(1): 56-65.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0320-5
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/56
Sample Weight /g
Fe3O4 PNA
Fe3O4 20 0
M0 0 3.0
M1 20 1.0
M2 20 2.0
M3 20 3.0
Tab.1  Compositions of Fe3O4, M0, M1, M2 and M3 samples
Fig.1  XRD patterns of Fe3O4 and M1.
Fig.2  TEM image of M3.
Fig.3  SEM images of PNA/Fe3O4: (a) M1; (b) M2.
Fig.4  (a) Ramman spectra of M3 (PNA/Fe3O4) sample and M0 (PNA) sample (inset: Fe3O4 sample). (b) PNA structure.
Fig.5  Magnetic moment of Fe3O4: measured sample after 2 months (a); new synthesized sample (b). (Inset: Ramman spectra).
Fig.6  Magnetic moment of samples (inset: the superparamagnetic properties with small Hc).
Fig.7  Dependence of the remained arsenic concentration as a function of the pH.
Fig.8  Determination of equilibrium time of arsenic absorption.
Fig.9  The pore distribution is characteristics through average pore size of Fe3O4 sample (inset: the adsorption–desorption isotherm curve of N2 at 77 K).
Fig.10  The pore distribution is characteristics through average pore size of M1 sample (inset: the adsorption–desorption isotherm curve of N2 at 77 K).
Sample BET specific surface area /(m2•g−1) Saturate magnetic moment /(emu·g−1) qmax /(mg·g−1)
Fe3O4 100.28 63.13 32.88
M0 5.32 0.00 23.45
M1 99.08 58.38 46.97
M2 38.35 56.73 37.74
M3 43.06 43.43 20.27
Tab.2  Specific surface area, saturate magnetic moment and maximum absorption capacity of Fe3O4, M0, M1, M2 and M3
Fig.11  The Langmuir adsorption isotherm curves.
pH Soluble iron ion concentration /ppb
Fe3O4 M3
1 0.21 0.17
2 0.13 0.13
7
Tab.3  Soluble iron ion concentration in the HCl solution
AASatomic absorption spectroscopy
BETBrunauer–Emmett–Teller
IOCDiron oxide-coated diatomite
IOCSiron oxide-coated sand
PNApoly(1-naphthylamine)
SEMscanning electron microscopy
STPstandard conditions for temperature and pressure
TEMtransmission electron microscopy
VSMvibrating sample magnetometer
XRDX-ray diffraction
Tab.1  
1 Shah  P, Sohma  M, Kawaguchi  K, . Growth conditions, structural and magnetic properties of M/Fe3O4/I (M= Al, Ag and I= Al2O3, MgO) multilayers. Journal of Magnetic and Materials, 2002, 247(1): 1–5
2 Liu  J, Bin  Y, Matsuo  M. Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. Journal of Physical Chemistry C, 2012, 116(1): 134–143
3 Bertone  J F, Cizeron  J, Wahi  R K, . Hydrothermal synthesis of quartz nanocrystal. Nano Letters, 2003, 3(5): 655–659
4 Rusanov  A I. Surface thermodynamic revisited. Surface Science Reports, 2005, 58(5–8): 111–239
5 Gu  H, Huang  Y, Zhang  X, . Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer, 2012, 53(3): 801–809
6 Khodabakhshi  A, Amin  M M, Mozaffari  M. Synthesis of magnetic nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Iranian Journal of Environmental Health Sciences & Engineering, 2011, 8(3): 189–200
7 Auffan  M, Rose  J, Proux  O, . Enhanced adsorption of arsenic onto magnetic nanoparticles: As(III) as a probe of surface structure and heterogeneity. Langmuir, 2008, 24(7): 3215–3222
8 Zouboulis  A I, Katsoyiannis  I A. Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environment International, 2005, 31(2): 213–219
9 Chaudhary  G R, Saharan  P, Kumar  A, . Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3240–3245
10 Liu  R, Lu  Y, Shen  X, . Adsorption kinetics and isotherms of arsenic(V) from aqueous solution onto Ni0.5Zn0.5Fe2O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 2835–2841
11 Fang  X B, Fang  Z Q, Tsang  P K E, . Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor. Applied Surface Science, 2014, 314: 655–662
12 Hao  T, Yang  C, Rao  X, . Facile additive-free synthesis of iron oxide nanoparticles for efficient adsorptive removal of Congo red and Cr(VI). Applied Surface Science, 2014, 292: 174–180
13 Yang  G, Tang  L, Lei  X, . Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Applied Surface Science, 2014, 292: 710–716
14 Chen  Q, He  Q, Lv  M, . The vital role of PANI for the enhanced photocatalytic activity of magnetically recyclable N–K2Ti4O9/MnFe2O4/PANI composites. Applied Surface Science, 2014, 311: 230–238
15 Jiang  Q L, Zheng  S W, Hong  R Y, . Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Applied Surface Science, 2014, 307: 24–233
16 Chen  M J, Shen  H, Li  X, . Facile synthesis of oil-soluble Fe3O4 nanoparticles based on a phase transfer mechanism. Applied Surface Science, 2014, 307: 306–310
17 Babu  C M, Palanisamy  B, Sundaravel  B, . A novel magnetic Fe3O4/SiO2 core–shell nanorods for the removal of arsenic. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 2517–2527
18 Chen  L, Xin  H, Fang  Y, . Application of metal oxide heterostructures in arsenic removal from contaminated water. Journal of Nanomaterials, 2014, 793610 (10 pages)
19 Park  J W, Jang  A N, Song  J H, . Electronic structure of Zn doped Fe3O4 thin films. Journal of Nanoscience and Nanotechnology, 2013, 13(3): 1895–1898
20 Li  X, Zhang  F, Ma  C, . Green synthesis of uniform magnetite (Fe3O4) nanoparticles and micron cubes. Journal of Nanoscience and Nanotechnology, 2012, 12(3): 2939–2942
21 Zapotoczny  B, Dudek  M R, Guskos  N, . FMR study of the porous silicate glasses with Fe3O4 magnetic nanoparticles fillers. Journal of Nanomaterials, 2012, 341073 (7 pages)
22 Méndez-Rodríguez  L, Zenteno-Savín  T, Acosta-Vargas  B, . Differences in arsenic, molybdenum, barium, and other physicochemical relationships in groundwater between sites with and without mining activities. Natural Science, 2013, 5(2): 238–243
23 Lin  K S, Dehvari  K, Liu  Y J, . Synthesis and characterization of porous zero-valent iron nanoparticles for remediation of chromium-contaminated wastewater. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 2675–2681
24 Zaki  H M, Al-Heniti  S, Umar  A, . Magnesium-zinc ferrite nanoparticles: effect of copper doping on the structural, electrical and magnetic properties. Journal of Nanoscience and Nanotechnology, 2013, 13(6): 4056–4065
25 Larumbe  S, Gómez-Polo  C, Pérez-Landazábal  J I, . Ni doped Fe3O4 magnetic nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12(3): 2652–2660
26 Rathore  D, Kurchania  R, Pandey  R K. Structural, magnetic and dielectric properties of Ni1−xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles synthesized by chemical co-precipitation method. Journal of Nanoscience and Nanotechnology, 2013, 13(3): 1812–1819
27 Liu  X, Zhong  Z, Tang  Y, . Review on the synthesis and applications of Fe3O4 nanomaterials. Journal of Nanomaterials, 2013, 902538, (7 pages)
28 Abdallah  H M, Moyo  T. Evidence of superparamagnetism in Mg0.5Mn0.5Fe2O4 nanosized ferrite. Journal of Superconductivity and Novel Magnetism, 2015, 28(3): 955–960
29 Genç  F, Turhan  E, Kavas  H, . Magnetic and microwave absorption properties of NixZn0.9−xMn0.1Fe2O4 prepared by boron addition. Journal of Superconductivity and Novel Magnetism, 2015, 28(3): 1047–1050
30 Uwamariya  V, Petrusevski  B, Slokar  Y M, . Effect of fulvic acid on adsorptive removal of Cr(VI) and As(V) from groundwater by iron oxide-based adsorbents. Water, Air, and Soil Pollution, 2015, 226(6): 184
31 Fakour  H, Pan  Y F, Lin  T F. Effect of humic acid on arsenic adsorption and pore. blockage on iron-based adsorbent. Water, Air, and Soil Pollution, 2015, 226(2): 14
32 Ameen  S, Akhtar  M S, Umar  A, . Effective modified electrode of poly(1-naphthylamine) nanoglobules for ultra-high sensitive ethanol chemical sensor. Chemical Engineering Journal, 2013, 229: 267–275
33 Ameen  S, Akhtar  M S, Kim  Y S, . Synthesis and characterization of novel poly(1-naphthylamine)/zinc oxide nanocomposites: Application in catalytic degradation of methylene blue dye. Colloid & Polymer Science, 2010, 288(16–17): 1633–1638
34 Webb  P A, Orr  C, Camp  R W, . Analytical Methods in Fine Particle Technology. Norcross, GA, USA: Micromeritics Instrument Corporation, 1997, 60–62
[1] Na-Qiong ZHU, Lin LI, Yan-Lin HE, Guang-Jie SHAO, Mei-Bo TANG, Jing-Tai ZHAO, . Effects of high magnetic field on thermodynamic properties of pure Fe and Cu[J]. Front. Mater. Sci., 2010, 4(1): 100-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed