Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (1) : 42-50    https://doi.org/10.1007/s11706-017-0365-0
RESEARCH ARTICLE
Construction of Au@Pt core--satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles
Wenlan WU2,Junbo LI1(),Sheng ZOU1,Jinwu GUO1,Huiyun ZHOU1
1. College of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luoyang 471023, China
2. Medical School, Henan University of Science & Technology, Luoyang 471003, China
 Download: PDF(365 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A method of in-situ reduction to prepare Au@Pt core–satellite nanoparticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core–satellite NPs. The characterization of composite and core–satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size (~2 nm) dotted around Au core, and the resulting Au@Pt core–satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core–satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction of p-nitrophenol with NaBH4.

Keywords polymeric ionic liquid      gold nanoparticles      platinum nanoparticles      core--satellite     
Corresponding Author(s): Junbo LI   
Online First Date: 13 January 2017    Issue Date: 22 January 2017
 Cite this article:   
Wenlan WU,Junbo LI,Sheng ZOU, et al. Construction of Au@Pt core--satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles[J]. Front. Mater. Sci., 2017, 11(1): 42-50.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0365-0
https://academic.hep.com.cn/foms/EN/Y2017/V11/I1/42
Fig.1  Scheme 1The schematic illustration of preparing Au@Pt core–satellite NPs and as the catalyst for the p-nitrophenol reduction.
Fig.2  (a) UV-vis spectrum and (b) TEM image of PMMPImB-@-Au NPs. (c) TGA analyses of PMMPImB (I) and PMMPImB-@-Au NPs (II). (d) DLS of PMMPImB-@-Au NPs.
Fig.3  (a) UV-vis spectra and (b) zeta-potentials of PMMPImB-@-Au NPs in presence of different volumes of PtCl62−.
Fig.4  (a) UV-vis spectra: PMMPImB-@-Au NPs (I); Au@Pt core–satellite NPs formed with PtCl62− at 10 μL (II), 20 μL (III) and 30 μL (IV); Pt NPs formed by complex with PMMPImB and PtCl62− at 30 μL (V). (b) DLS of Au@Pt core–satellite NPs.
Fig.5  TEM images: Au@Pt core–satellite NPs formed with PtCl62− at (a) 10 μL, (b) 20 μL and (c) 30 μL; (d) Pt NPs formed by complex with PMMPImB and PtCl62− at 30 μL.
Fig.6  UV-vis spectra of p-nitrophenol in the presence of (a) Au@Pt core–satellite NPs, (b) Pt NPs and (c) Au core template as catalysts. (d) The plot of ln(Ct/C0) versus the reaction time of the three catalysts.
Fig.7  The conversion ratio of p-nitrophenol with Au@Pt core–satellite NPs as the catalyst in different cycles.
1 Höller R P M, Dulle M, Thomä S, . Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: correlation of structure and optical properties. ACS Nano, 2016, 10(6): 5740–5750
https://doi.org/10.1021/acsnano.5b07533 pmid: 26982386
2 Rohani P, Sharma M K, Swihart M T. Core–satellite ZnS–Ag nanoassemblies: Synthesis, structure, and optical properties. Journal of Colloid and Interface Science, 2016, 463: 207–213
https://doi.org/10.1016/j.jcis.2015.10.059 pmid: 26524256
3 Rong Z, Xiao R, Wang C, . Plasmonic Ag core–satellite nanostructures with a tunable silica-spaced nanogap for surface-enhanced Raman scattering. Langmuir, 2015, 31(29): 8129–8137
https://doi.org/10.1021/acs.langmuir.5b01713 pmid: 26132410
4 Xiong W, Sikdar D, Yap L W, . Multilayered core–satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale, 2015, 7(8): 3445–3452
https://doi.org/10.1039/C4NR06756H pmid: 25644681
5 Rodríguez-Fernández D, Langer J, Henriksen-Lacey M, . Hybrid Au–SiO2 core–satellite colloids as switchable SERS tags. Chemistry of Materials, 2015, 27(7): 2540–2545
https://doi.org/10.1021/acs.chemmater.5b00128
6 Waldeisen J R, Wang T, Ross B M, . Disassembly of a core–satellite nanoassembled substrate for colorimetric biomolecular detection. ACS Nano, 2011, 5(7): 5383–5389
https://doi.org/10.1021/nn2002807 pmid: 21667984
7 Hu J, Dong Y, Rahman Z, . In situ preparation of core–satellites nanostructural magnetic-Au NPs composite for catalytic degradation of organic contaminants. Chemical Engineering Journal, 2014, 254: 514–523
https://doi.org/10.1016/j.cej.2014.05.140
8 Foroushani A, Zhang Y, Li D, . Tunnelling current recognition through core–satellite gold nanoparticles for ultrasensitive detection of copper ions. Chemical Communications, 2015, 51(14): 2921–2924
https://doi.org/10.1039/C4CC09451D pmid: 25585717
9 Chou L Y, Zagorovsky K, Chan W C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nature Nanotechnology, 2014, 9(2): 148–155
https://doi.org/10.1038/nnano.2013.309 pmid: 24463361
10 Dey P, Zhu S, Thurecht K J, . Self assembly of plasmonic core–satellite nano assemblies mediated by hyper branched polymer linkers. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(19): 2827–2837
https://doi.org/10.1039/C4TB00263F
11 Chu W, Zhang Y, Li D, . A biomimetic sensor for the detection of lead in water. Biosensors & Bioelectronics, 2015, 67: 621–624
https://doi.org/10.1016/j.bios.2014.09.077 pmid: 25449876
12 Zhang L, Xu Y, Yao H, . Boronic acid functionalized core–satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chemistry, 2009, 15(39): 10158–10166
https://doi.org/10.1002/chem.200901347 pmid: 19658139
14 Zou F M, Ding Q Q, Tran V T, . Magnetically recyclable catalytic activity of spiky magneto-plasmonic nanoparticles. RSC Advances, 2015, 5(70): 56653–56657
https://doi.org/10.1039/C5RA08425C
13 Sun M, Xu L, Ma W, . Hierarchical plasmonic nanorods and upconversion core–satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Advanced Materials, 2016, 28(5): 898–904
https://doi.org/10.1002/adma.201505023 pmid: 26635317
15 Ge J, Zhang Q, Zhang T, . Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angewandte Chemie International Edition, 2008, 47(46): 8924–8928
https://doi.org/10.1002/anie.200803968 pmid: 18925600
16 Heinrich T, Traulsen C H, Holzweber M, . Coupled molecular switching processes in ordered mono- and multilayers of stimulus-responsive rotaxanes on gold surfaces. Journal of the American Chemical Society, 2015, 137(13): 4382–4390
https://doi.org/10.1021/ja512654d pmid: 25782057
17 He X, Liu Z, Fan F, . Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis. Journal of Nanoparticle Research, 2015, 17(2): 74 (10 pages)
https://doi.org/10.1007/s11051-015-2872-1
20 Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011, 36(12): 1629–1648
https://doi.org/10.1016/j.progpolymsci.2011.05.007
21 Amajjahe S, Ritter H. Microwave-sensitive foamable poly(ionic liquids) bearing tert-butyl ester groups: influence of counterions on the ester pyrolysis. Macromolecular Rapid Communications, 2009, 30(2): 94–98
https://doi.org/10.1002/marc.200800575 pmid: 21706581
18 Li J B, Zhang S J, Liang J, . One-dimensional assembly of polymeric ionic liquid capped gold nanoparticles driven by electrostatic dipole interaction. RSC Advances, 2015, 5(11): 7994–8001
https://doi.org/10.1039/C4RA14625E
19 Li J B, Zhao J, Wu W, . Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles. Frontiers of Materials Science, 2016, 10(2): 178–186
https://doi.org/10.1007/s11706-016-0334-z
22 Zhang J, Meng L, Zhao D, . Fabrication of dendritic gold nanoparticles by use of an ionic polymer template. Langmuir, 2008, 24(6): 2699–2704
https://doi.org/10.1021/la702421z pmid: 18288870
23 Zhang H J, Li X, Chen G. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. Journal of Materials Chemistry, 2009, 19(43): 8223–8231
https://doi.org/10.1039/b910610c
24 Anderson E B, Long T E. Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer, 2010, 51(12): 2447–2454
https://doi.org/10.1016/j.polymer.2010.02.006
25 Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011, 36(12): 1629–1648
https://doi.org/10.1016/j.progpolymsci.2011.05.007
26 Khatri O P, Adachi K, Murase K, . Self-assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface: chemical and structural aspects. Langmuir, 2008, 24(15): 7785–7792
https://doi.org/10.1021/la800678m pmid: 18572958
27 Yuan J Y, Wunder S, Warmuth F, . Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer, 2012, 53(1): 43–49
https://doi.org/10.1016/j.polymer.2011.11.031
28 Kameyama T, Ohno Y, Kurimoto T, . Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications. Physical Chemistry Chemical Physics, 2010, 12(8): 1804–1811
https://doi.org/10.1039/B914230D pmid: 20145845
29 Shan C, Li F, Yuan F, . Size-controlled synthesis of monodispersed gold nanoparticles stabilized by polyelectrolyte-functionalized ionic liquid. Nanotechnology, 2008, 19(28): 285601
https://doi.org/10.1088/0957-4484/19/28/285601 pmid: 21828732
30 Li J, Liang J, Wu W, . AuCl4−-responsive self-assembly of ionic liquid block copolymers for obtaining composite gold nanoparticles and polymeric micelles with controlled morphologies. New Journal of Chemistry, 2014, 38(6): 2508–2513
31 Tian Y, Xia J, Zhang L, . Ionic liquid based polymeric liposomes: A stable and biocompatible soft platform for bioelectrochemistry. Bioelectrochemistry, 2016, 111: 41–48
https://doi.org/10.1016/j.bioelechem.2016.05.001 pmid: 27196632
32 Buaki M, Aprile C, Dhakshinamoorthy A, . Liposomes by polymerization of an imidazolium ionic liquid: use as microreactors for gold-catalyzed alcohol oxidation. Chemistry, 2009, 15(47): 13082–13089
https://doi.org/10.1002/chem.200902395 pmid: 19856353
33 Lee S, Cummins M D, Willing G A, . Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits. Journal of Materials Chemistry, 2009, 19(43): 8092–8101
https://doi.org/10.1039/b910059h
34 Jones S T, Walsh-Korb Z, Barrow S J, . The importance of excess poly(N-isopropylacrylamide) for the aggregation of poly(N-isopropylacrylamide)-coated gold nanoparticles. ACS Nano, 2016, 10(3): 3158–3165
https://doi.org/10.1021/acsnano.5b04083 pmid: 26788966
35 Gracia R, Vijayakrishna K, Mecerreyes D. Poly(ionic liquid)s with redox active counter-anions: All-in-one reactants and stabilizers for the synthesis of functional colloids. Reactive & Functional Polymers, 2014, 79: 54–58
https://doi.org/10.1016/j.reactfunctpolym.2014.03.005
36 Luo S, Xu J, Zhang Y, . Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking. The Journal of Physical Chemistry B, 2005, 109(47): 22159–22166
https://doi.org/10.1021/jp0549935 pmid: 16853883
37 Ye Y S, Elabd Y A. Anion exchanged polymerized ionic liquids: High free volume single ion conductors. Polymer, 2011, 52(5): 1309–1317
https://doi.org/10.1016/j.polymer.2011.01.031
38 Yu B, Zhou F, Wang C, . A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. European Polymer Journal, 2007, 43(6): 2699–2707
https://doi.org/10.1016/j.eurpolymj.2007.03.027
39 Glebov E M, Pozdnyakov I P, Plyusnin V F, . Primary reactions in the photochemistry of hexahalide complexes of platinum group metals: A mini review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 1–5
https://doi.org/10.1016/j.jphotochemrev.2015.05.003
40 Kocak G, Bütün V. Synthesis and stabilization of Pt nanoparticles in core cross-linked micelles prepared from an amphiphilic diblock copolymer. Colloid & Polymer Science, 2015, 293(12): 3563–3572
https://doi.org/10.1007/s00396-015-3727-0
41 Lu Y, Yuan J, Polzer F, . In situ growth of catalytic active Au–Pt bimetallic nanorods in thermoresponsive core–shell microgels. ACS Nano, 2010, 4(12): 7078–7086
https://doi.org/10.1021/nn102622d pmid: 21082786
[1] Junbo LI,Jianlong ZHAO,Wenlan WU,Ju LIANG,Jinwu GUO,Huiyun ZHOU,Lijuan LIANG. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles[J]. Front. Mater. Sci., 2016, 10(2): 178-186.
[2] Jiang-Yu WU, Yan LI, Yong MAO, Jia XU, Xu ZHOU, . Amine-terminated TEG-derived PAMAM dendrimer as template for preparation of gold nanoparticles in water[J]. Front. Mater. Sci., 2010, 4(1): 95-99.
[3] LIU Shuxia, HE Junhui. Inorganic replication of human hair and in situ synthesis of gold nanoparticles[J]. Front. Mater. Sci., 2007, 1(3): 263-267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed