Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (3) : 271-275    https://doi.org/10.1007/s11706-017-0393-9
RESEARCH ARTICLE
Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications
Wenyan ZHAO1, Chuanjin TIAN1(), Zhipeng XIE2, Changan WANG2, Wuyou FU3, Haibin YANG3
1. School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
2. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
3. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
 Download: PDF(245 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The hierarchical ZnO nanostructures with 2-fold symmetrical nanorod arrays on zinc aluminum carbonate (ZnAl-CO3) nanosheets have been successfully synthesized through a two-step hydrothermal process. The primary nanosheets, which serve as the lattice-matched substrate for the self-assembly nanorod arrays at the second-step of the hydrothermal route, have been synthesized by using a template of anodic aluminum oxide (AAO). The as-prepared samples were characterized by XRD, FESEM, TEM and SAED. The nanorods have a diameter of about 100 nm and a length of about 2 µm. A growth mechanism was proposed according to the experimental results. The gas sensor fabricated from ZnO nanorod arrays showed a high sensitivity to ethanol at 230 °C. In addition, the response mechanism of the sensors has also been discussed according to the transient response of the gas sensors.

Keywords ZnO nanorods      hydrothermal growth      gas sensitivity     
Corresponding Author(s): Chuanjin TIAN   
Online First Date: 14 August 2017    Issue Date: 24 August 2017
 Cite this article:   
Wenyan ZHAO,Chuanjin TIAN,Zhipeng XIE, et al. Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications[J]. Front. Mater. Sci., 2017, 11(3): 271-275.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0393-9
https://academic.hep.com.cn/foms/EN/Y2017/V11/I3/271
Fig.1  XRD patterns of the AAO template (a), ZnAl-CO3 nanosheets (b), and ZnO nanorods on ZnAl-CO3 nanosheets (c).
Fig.2  (a) FESEM image of the AAO. (b) FESEM and (c) TEM images of ZnAl-CO3 nanosheets after the first-step hydrothermal synthesis, with the SAED pattern shown in the inset. ZnO nanorod arrays on nanosheets after the second-step of the hydrothermal synthesis of(d) 2 h and (e) 4 h (the insets in (d) and (e) are an enlarged FESEM image and a SAED image of the nanorod, respectively).
Fig.3  (a) The operating temperature dependence of the sensitivity to 50 ppm ethanol. (b) The ethanol concentration dependence of the sensor response (the inset is the ethanol concentration dependence of the sensitivity).
1 Özgür Ü ,  Alivov Y I ,  Liu C, et al.. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, 98(4): 041301
https://doi.org/10.1063/1.1992666
2 Kochuveedu S T ,  Oh J H ,  Do Y R , et al.. Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles. Chemistry, 2012, 18(24): 7467–7472
https://doi.org/10.1002/chem.201200054 pmid: 22555776
3 Martha S, Reddy  K H, Parida  K M. Fabrication of In2O3 modified ZnO for enhancing stability, optical behavior, electronic properties and photocatalytic activity for hydrogen production under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(10): 3621–3631
https://doi.org/10.1039/c3ta14285j
4 Hu W, Li  Z, Yang J . Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures. The Journal of Chemical Physics, 2013, 138(12): 124706
https://doi.org/10.1063/1.4796602 pmid: 23556741
5 Liu Z, Wang  Y, Wang B , et al.. PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties. International Journal of Hydrogen Energy, 2013, 38(25): 10226–10234
https://doi.org/10.1016/j.ijhydene.2013.06.028
6 Wang D, Chu  X, Gong M . Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology, 2007, 18(18): 185601
https://doi.org/10.1088/0957-4484/18/18/185601
7 Shi L, Naik  A J T, Goodall  J B M, et al.. Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: size and shape control using a continuous hydrothermal pilot plant. Langmuir, 2013, 29(33): 10603–10609
https://doi.org/10.1021/la402339m pmid: 23841720
8 Pacholski C, Kornowski  A, Weller H . Selbstorganisation von ZnO: von nanopartikeln zu nanostäbchen. Angewandte Chemie, 2002, 114(7): 1234–1237
https://doi.org/10.1002/1521-3757(20020402)114:7<1234::AID-ANGE1234>3.0.CO;2-D
9 Wang W Z, Zeng  B Q, Yang  J, et al.. Aligned ultralong ZnO nanobelts and their enhanced field emission. Advanced Materials, 2006, 18(24): 3275–3278
https://doi.org/10.1002/adma.200601274
10 Xia Y, Yang  P. Guest editorial: chemistry and physics of nanowires. Advanced Materials, 2003, 15(5): 351–352
https://doi.org/10.1002/adma.200390086
11 Martinson A B F ,  Elam J W ,  Hupp J T , et al.. ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007, 7(8): 2183–2187
https://doi.org/10.1021/nl070160+ pmid: 17602535
12 Hu L, Yan  J, Liao M , et al.. An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Advanced Materials, 2012, 24(17): 2305–2309
https://doi.org/10.1002/adma.201200512 pmid: 22467271
13 Wang X, Song  J, Wang Z L . Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry, 2007, 17(8): 711–720
https://doi.org/10.1039/b616963p
14 Huang X J, Choi  Y K. Chemical sensors based on nanostructured materials. Sensors and Actuators B: Chemical, 2007, 122(2): 659–671
https://doi.org/10.1016/j.snb.2006.06.022
15 Greene L E, Law  M, Tan D H , et al.. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 2005, 5(7): 1231–1236
https://doi.org/10.1021/nl050788p pmid: 16178216
16 Chakrabarti S, Dutta  B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 2004, 112(3): 269–278
https://doi.org/10.1016/j.jhazmat.2004.05.013 pmid: 15302448
17 Fang X, Yan  J, Hu L , et al.. Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Advanced Functional Materials, 2012, 22(8): 1613–1622
https://doi.org/10.1002/adfm.201102196
18 Xiang B, Wang  P, Zhang X , et al.. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Letters, 2007, 7(2): 323–328
https://doi.org/10.1021/nl062410c pmid: 17297995
19 Yin Z, Wu  S, Zhou X , et al.. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small, 2010, 6(2): 307–312
https://doi.org/10.1002/smll.200901968 pmid: 20039255
20 Whang D, Jin  S, Wu Y , et al.. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Letters, 2003, 3(9): 1255–1259
https://doi.org/10.1021/nl0345062
21 Basu S, Dutta  A. Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application. Sensors and Actuators B: Chemical, 1994, 22(2): 83–87
https://doi.org/10.1016/0925-4005(94)87004-7
22 Gong H, Hu  J Q, Wang  J H, et al.. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors and Actuators B: Chemical, 2006, 115(1): 247–251
https://doi.org/10.1016/j.snb.2005.09.008
23 Kim J, Yong  K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. The Journal of Physical Chemistry C, 2011, 115(15): 7218–7224
https://doi.org/10.1021/jp110129f
24 Baratto C, Sberveglieri  G, Onischuk A , et al.. Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sensors and Actuators B: Chemical, 2004, 100(1–2): 261–265
https://doi.org/10.1016/j.snb.2003.12.045
25 Sander M S, Gronsky  R, Sands T , et al.. Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chemistry of Materials, 2003, 15(1): 335–339
https://doi.org/10.1021/cm0207604
26 Koh Y W, Lin  M, Tan C K , et al.. Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat. The Journal of Physical Chemistry B, 2004, 108(31): 11419–11425
https://doi.org/10.1021/jp049134f
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed