Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (4) : 353-357    https://doi.org/10.1007/s11706-017-0397-5
RESEARCH ARTICLE
Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth
Wanyu ZHAO1, Jian LI1, Bingbing FAN1(), Gang SHAO1, Hailong WANG1, Bozhen SONG1, Shengnan WEI1, Rui ZHANG1,2()
1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2. Henan Key Laboratory of Aeronautical Material and Application Technology, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
 Download: PDF(210 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chain-like zircona (ZrO2) nanofibers were prepared by microwave sintering without any surfactants or solid templates. Microwave sintering was conducted in a multimode microwave cavity with TE666 resonant mode at 2.45 GHz. Carbon particles were used to activate unique thermal processes when mixed with ZrO2 precursor. The sintering condition was at 1300°C for 10 min. Samples were characterized by XRD, SEM, TEM techniques. It was found that both monolithic and tetragonal ZrO2 co-existed in samples prepared from the mixture of ZrO2 precursors and carbon by either microwave or conventional sintering. Only m-ZrO2 exists in samples prepared by ZrO2 precursors without carbon. ZrO2 appeared as chain-like nanofibers, which might be attributed to a so-called carbon-induced self-assembly growth mechanism.

Keywords ZrO2      chain-like nanofibers      microwave sintering      carbon-induced      self-assembly growth     
Corresponding Author(s): Bingbing FAN,Rui ZHANG   
Online First Date: 31 October 2017    Issue Date: 29 November 2017
 Cite this article:   
Wanyu ZHAO,Jian LI,Bingbing FAN, et al. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth[J]. Front. Mater. Sci., 2017, 11(4): 353-357.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0397-5
https://academic.hep.com.cn/foms/EN/Y2017/V11/I4/353
Fig.1  Practical heating profiles and corresponding reflected power changes of Samples A and C by the microwave sintering.
Fig.2  XRD patterns of Samples A, B and C.
Fig.3  SEM images of (a) Sample A, (c) Sample B and (d) Sample C, and (b) the EDS pattern of Sample A.
Fig.4  TEM images and the HRTEM image (inset) of Sample A.
Fig.5  A schematic illustration of the microwave sintering procedure for generating chain-like ZrO2 nanofibers.
1 Mamak M, Coombs  N, Ozin G A . Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials. Advanced Functional Materials, 2001, 11(1): 59–63
https://doi.org/10.1002/1616-3028(200102)11:1<59::AID-ADFM59>3.0.CO;2-F
2 Bartolomeo E D ,  Grilli M L ,  Yoon J W , et al.. Zirconia-based electrochemical NOx sensors with semiconducting oxide electrodes. Journal of the American Ceramic Society, 2004, 87(10): 1883–1889
https://doi.org/10.1111/j.1151-2916.2004.tb06335.x
3 Gole J L, Prokes  S M, Stout  J D, et al.. Unique properties of selectively formed zirconia nanostructures. Advanced Materials, 2006, 18(5): 664–667
https://doi.org/10.1002/adma.200500769
4 Ghosh S, Teweldebrhan  D, Morales J R , et al.. Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia. Journal of Applied Physics, 2009, 106(11): 113507
https://doi.org/10.1063/1.3264613
5 Shu Z, Jiao  X, Chen D . Synthesis and photocatalytic properties of flower-like zirconia nanostructures. CrystEngComm, 2012, 14(3): 1122–1127 
https://doi.org/10.1039/C1CE06155K
6 Oliveira A P, Torem  M L. The influence of precipitation variables on zirconia powder synthesis. Powder Technology, 2001, 119(2–3): 181–193
https://doi.org/10.1016/S0032-5910(00)00422-8
7 Bondioli F, Ferrari  A M, Leonelli  C, et al.. Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. Journal of the American Ceramic Society, 2001, 84(11): 2728–2730
https://doi.org/10.1111/j.1151-2916.2001.tb01084.x
8 Kuo C W, Lee  Y H, Hung  I M, et al.. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol–gel process. Journal of Alloys and Compounds, 2008, 453(1–2): 470–475
https://doi.org/10.1016/j.jallcom.2006.11.146
9 Duran C, Sato  K, Hotta Y , et al.. Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders. Ceramics International, 2015, 41(4): 5588–5593
https://doi.org/10.1016/j.ceramint.2014.12.138
10 Cao H Q, Qiu  X Q, Luo  B, et al.. Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Advanced Functional Materials, 2004, 14(3): 243–246
https://doi.org/10.1002/adfm.200305033
11 Liu Y, Zheng  C, Wang W , et al.. Synthesis and characterization of zirconia nanorods. Journal of the American Ceramic Society, 2002, 85(12): 3120–3122
https://doi.org/10.1111/j.1151-2916.2002.tb00596.x
12 Jiang C, Wang  F, Wu N , et al.. Up- and down-conversion cubic zirconia and hafnia nanobelts. Advanced Materials, 2008, 20(24): 4826–4829
https://doi.org/10.1002/adma.200801459
13 Fang D, Huang  K, Luo Z , et al.. Freestanding ZrO2 nanotube membranes made by anodic oxidation and effect of heat treatment on their morphology and crystalline structure. Journal of Materials Chemistry, 2011, 21(13): 4989–4994
https://doi.org/10.1039/c0jm03903a
14 Birnboim A, Calame  J P, Carmel  Y. Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing. Journal of Applied Physics, 1999, 85(1): 478–482
https://doi.org/10.1063/1.369411
15 Zhang H B, Edirisinghe  M J. Electrospinning zirconia fiber from a suspension. Journal of the American Ceramic Society, 2006, 89(6): 1870–1875
https://doi.org/10.1111/j.1551-2916.2006.01038.x
16 Tok A I Y ,  Boey F Y C ,  Du S W , et al.. Flame spray synthesis of ZrO2 nano-particles using liquid precursors. Materials Science and Engineering B, 2006, 130(1–3): 114–119
https://doi.org/10.1016/j.mseb.2006.02.069
17 Wang J A, Valenzuela  M A, Salmones  J, et al.. Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods. Catalysis Today, 2001, 68(1–3): 21–30
https://doi.org/10.1016/S0920-5861(01)00319-4
18 Srdić V V ,  Winterer M . Comparison of nanosized zirconia synthesized by gas and liquid phase methods. Journal of the European Ceramic Society, 2006, 26(15): 3145–3151
https://doi.org/10.1016/j.jeurceramsoc.2005.10.006
19 Pian X, Fan  B, Chen H , et al.. Preparation of m-ZrO2 compacts by microwave sintering. Ceramics International, 2014, 40(7): 10483–10488
https://doi.org/10.1016/j.ceramint.2014.03.019
20 Oghbaei M, Mirzaee  O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 2010, 494(1–2): 175–189
https://doi.org/10.1016/j.jallcom.2010.01.068
21 Rybakov K I, Semenov  V E, Link  G, et al.. Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field. Journal of Applied Physics, 2007, 101(8): 084915
https://doi.org/10.1063/1.2723187
22 Chandrasekaran S, Basak  T, Srinivasan R . Microwave heating characteristics of graphite based powder mixtures. International Communications in Heat and Mass Transfer, 2013, 48: 22–27
https://doi.org/10.1016/j.icheatmasstransfer.2013.09.008
23 Menéndez J A ,  Juárez-Pérez E J ,  Ruisánchez E , et al.. Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon, 2011, 49(1): 346–349
https://doi.org/10.1016/j.carbon.2010.09.010
24 Menéndez J A ,  Arenillas A ,  Fidalgo B , et al.. Microwave heating processes involving carbon materials. Fuel Processing Technolo-gy, 2010, 91(1): 1–8
https://doi.org/10.1016/j.fuproc.2009.08.021
[1] Hai-Long WANG, De-Liang CHEN, Hong-Ling XU, Hong-Xia LU, Rui ZHANG, Lun FENG, Chang-An WANG, . Preparation and characterization of ZrB 2 -SiC ultra-high temperature ceramics by microwave sintering[J]. Front. Mater. Sci., 2010, 4(3): 276-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed