Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (4) : 318-327    https://doi.org/10.1007/s11706-017-0402-z
RESEARCH ARTICLE
Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays
Shenglian YAO1,2, Xujia FENG1, Wenhao LI1, Lu-Ning WANG1(), Xiumei WANG2()
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(436 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Titanium (Ti) implants with TiO2 nanotubular arrays on the surface could regulate cells adhesion, proliferation and differentiation to determine the bone integration. Additionally, the regulation of immune cells could improve osteogenesis or lead in appropriate immune reaction. Thus, we evaluate the behavior of RAW 264.7 macrophages on TiO2 nanotubular arrays with a wide range diameter (from 20 to 120 nm) fabricated by an electrochemical anodization process. In this work, the proliferation, cell viability and cytokine/chemokine secretion were evaluated by CCK-8, live/dead staining and ELISA, respectively. SEM and confocal microscopy were used to observe the adhesion morphology. Results showed that the small size nanotube surface was benefit for the macrophages adhesion and proliferation, while larger size surface could reduce the inflammatory response. These findings contribute to the design of immune-regulating Ti implants surface that supports successful implantation.

Keywords RAW 264.7 macrophages      nanotopography      TiO2 nanotubular arrays      inflammation     
Corresponding Author(s): Lu-Ning WANG,Xiumei WANG   
Online First Date: 03 November 2017    Issue Date: 29 November 2017
 Cite this article:   
Shenglian YAO,Xujia FENG,Wenhao LI, et al. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays[J]. Front. Mater. Sci., 2017, 11(4): 318-327.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0402-z
https://academic.hep.com.cn/foms/EN/Y2017/V11/I4/318
Fig.1  SEM images of the various sample surfaces (the insert images are the bottom of the TiO2 nanotubular arrays): (a)flat Ti with native TiO2 oxide layer; (b) 20 nm, (c) 50 nm and (d) 120 nm TiO2 nanotubular surface.
Fig.2  Typical SEM morphologies of macrophage cells cultured on (a1)(a2)flat Ti and (b1)(b2)(c1)(c2)(d1)(d2)TiO2 nanotubular surface with various sizes (20, 50 and 120 nm). The red block area in (a1)–(d1) are magnified in (a2)–(d2).
Fig.3  Macrophage cells adhesion and proliferation on the various sample surfaces by CCK-8 assay. Error bars represent standard deviation for three specimens for each piece of data. * Statistical significance (p<0.05).
Fig.4  Fluorescence images showing live/dead assays at 2 d post-seeding with/without the LPS pro-inflammatory. With the LPS stimulation (+LPS), the live cell density on all the surface ((a2) Ti, (b2)20 nm, (c2)50 nm and (d2)120 nm) is lower than the standard culture condition (−LPS) on (a1) Ti and (b1)(c1)(d1) TiO2 nanotubular surfaces (20, 50 and 120 nm). Green= live cells; Red= dead cells.
Fig.5  Fluorescence micrographs of RAW 264.7 cells stained with rhodamine phalloidin (F-actin) and DAPI (nucleus) after 4 d of culture. Comparing to the standard culture condition (−LPS) on various surfaces ((a1) Ti, (b1) 20 nm, (c1) 50 nm and (d1) 120 nm), the stimulated cells (+LPS) on various surfaces ((a2) Ti, (b2) 20 nm, (c2) 50 nm and (d2) 120 nm) showed larger spread area.
Fig.6  Morphology of macrophage cells cultured on (a1)(a2)flat Ti and (b1)(b2)(c1)(c2)(d1)(d2) TiO2 nanotubular surface with various sizes (20, 50 and 120 nm) with the LPS pro-inflammatory.
Fig.7  Mean (±SD) levels of (a) MCP-1 and (b) TNF-α secreted into culture media after 4 d culture of RAW 264.7 macrophages without the LPS pro-inflammatory, as detected by ELISA. * Statistical significance (p<0.05).
1 Wang L N, Jin M, Zheng Y, et al.. Nanotubular surface modification of metallic implants via electrochemical anodization technique. International Journal of Nanomedicine, 2014, 9(1): 4421–4435
https://doi.org/10.2147/IJN.S65866 pmid: 25258532
2 Minagar S, Berndt C C, Wang J, et al.. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 2012, 8(8): 2875–2888
https://doi.org/10.1016/j.actbio.2012.04.005  pmid: 22542885
3 Wang G, Moya S, Lu Z, et al.. Enhancing orthopedic implant bioactivity: refining the nanotopography. Nanomedicine, 2015, 10(8): 1327–1341 
https://doi.org/10.2217/nnm.14.216  pmid: 25955126
4 Yao C, Webster T J. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. Journal of Nanoscience and Nanotechnology, 2006, 6(9–10): 2682– 2692 
https://doi.org/10.1166/jnn.2006.447  pmid: 17048475
5 Kulkarni M, Mazare A, Gongadze E, et al.. Titanium nano-structures for biomedical applications. Nanotechnology, 2015, 26(6): 062002
https://doi.org/10.1088/0957-4484/26/6/062002  pmid: 25611515
6 Nair M, Elizabeth E. Applications of titania nanotubes in bone biology. Journal of Nanoscience and Nanotechnology, 2015, 15(2): 939–955 
https://doi.org/10.1166/jnn.2015.9771  pmid: 26353600
7 Oh S, Brammer K S, Li Y S J, et al.. Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130–2135
https://doi.org/10.1073/pnas.0813200106  pmid: 19179282
8 Park J, Bauer S, Schlegel K A, et al.. TiO2 nanotube surfaces: 15 nm — an optimal length scale of surface topography for cell adhesion and differentiation. Small, 2009, 5(6): 666–671 
https://doi.org/10.1002/smll.200801476  pmid: 19235196
9 Thomas M V, Puleo D A. Infection, inflammation, and bone regeneration: a paradoxical relationship. Journal of Dental Research, 2011, 90(9): 1052–1061 
https://doi.org/10.1177/0022034510393967  pmid: 21248364
10 Abdelmagid S M, Barbe M F, Safadi F F. Role of inflammation in the aging bones. Life Sciences, 2015, 123: 25–34 
https://doi.org/10.1016/j.lfs.2014.11.011  pmid: 25510309
11 Chen Z, Klein T, Murray R Z, et al.. Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 2016, 19(6): 304–321 
https://doi.org/10.1016/j.mattod.2015.11.004
12 Miron R J, Bosshardt D D. OsteoMacs: Key players around bone biomaterials. Biomaterials, 2016, 82: 1–19  
https://doi.org/10.1016/j.biomaterials.2015.12.017 pmid: 26735169
13 Franz S, Rammelt S, Scharnweber D, et al.. Immune responses to implants — a review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 2011, 32(28): 6692–6709 
https://doi.org/10.1016/j.biomaterials.2011.05.078  pmid: 21715002
14 Smith B S, Capellato P, Kelley S, et al.. Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomaterials Science, 2013, 1(3): 322–332 
https://doi.org/10.1039/C2BM00079B
15 Rajyalakshmi A, Ercan B, Balasubramanian K, et al.. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. International Journal of Nanomedicine, 2011, 6(6): 1765–1771 
pmid: 21980239
16 Lü W L, Wang N, Gao P, et al.. Effects of anodic titanium dioxide nanotubes of different diameters on macrophage secretion and expression of cytokines and chemokines. Cell Proliferation, 2015, 48(1): 95–104 
https://doi.org/10.1111/cpr.12149  pmid: 25521217
17 Neacsu P, Mazare A, Cimpean A, et al.. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. The International Journal of Biochemistry & Cell Biology, 2014, 55: 187–195
https://doi.org/10.1016/j.biocel.2014.09.006  pmid: 25220343
18 Neacsu P, Mazare A, Schmuki P, et al.. Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways. International Journal of Nanomedicine, 2015, 10: 6455–6467 
pmid: 26491301
19 Jin S, Chamberlain L M, Brammer K S, et al.. Macrophage inflammatory response to TiO2 nanotube surfaces. Journal of Biomaterials and Nanobiotechnology, 2011, 2(3): 293–300
https://doi.org/10.4236/jbnb.2011.23036
20 Ma Q L, Zhao L Z, Liu R R, et al.. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials, 2014, 35(37): 9853–9867
https://doi.org/ 10.1016/j.biomaterials.2014.08.025  pmid: 25201737
21 Lee S, Choi J, Shin S, et al.. Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. Acta Biomaterialia, 2011, 7(5): 2337–2344
https://doi.org/10.1016/j.actbio.2011.01.006  pmid: 21232636
22 Liu X, Liu R, Cao B, et al.. Subcellular cell geometry on micropillars regulates stem cell differentiation. Biomaterials, 2016, 111: 27–39 
https://doi.org/10.1016/j.biomaterials.2016.09.023  pmid: 27716524
23 Lv L, Liu Y, Zhang P, et al.. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials, 2015, 39: 193–205  
https://doi.org/10.1016/j.biomaterials.2014.11.002 pmid: 25468371
24 Biggs M J, Richards R G, Dalby M J. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6(5): 619–633 
https://doi.org/10.1016/j.nano.2010.01.009  pmid: 20138244
25 McNamara L E, McMurray R J, Biggs M J P, et al.. Nanotopographical control of stem cell differentiation. Journal of Tissue Engineering, 2010, 1: 120623  
https://doi.org/10.4061/2010/120623 pmid: 21350640
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed