Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (2) : 147-155    https://doi.org/10.1007/s11706-018-0416-1
RESEARCH ARTICLE
High performance sandwich structured Si thin film anodes with LiPON coating
Xinyi LUO1, Jialiang LANG1, Shasha LV1, Zhengcao LI2()
1. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2. Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(409 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

Keywords sandwich anode      LiPON coating      flexible substrate      silicon anode     
Corresponding Author(s): Zhengcao LI   
Online First Date: 18 April 2018    Issue Date: 29 May 2018
 Cite this article:   
Xinyi LUO,Jialiang LANG,Shasha LV, et al. High performance sandwich structured Si thin film anodes with LiPON coating[J]. Front. Mater. Sci., 2018, 12(2): 147-155.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0416-1
https://academic.hep.com.cn/foms/EN/Y2018/V12/I2/147
1 Chan C K, Peng H, Liu G, et al.. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
DOI:10.1038/nnano.2007.411      PMID:18654447     
2 Zhou X S, Yu L, Yu X Y, et al.. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Advanced Energy Materials, 2016, 6(22): 1601177
DOI:10.1002/aenm.201601177     
3 Zhou X, Yu L, Lou X W. Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties. Nanoscale, 2016, 8(15): 8384–8389
DOI:10.1039/C6NR01272H      PMID:27045732     
4 Mo R, Tung S O, Lei Z, et al.. Pushing the limits: 3D layer-by-layer assembled composites for cathodes with 160 C discharge rates. ACS Nano, 2015, 9(5): 5009–5017
DOI:10.1021/nn507186k      PMID:25910177     
5 Zhou X, Dai Z, Liu S, et al.. Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Advanced Materials, 2014, 26(23): 3943–3949
DOI:10.1002/adma.201400173      PMID:24664966     
6 Ge M, Rong J, Fang X, et al.. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Letters, 2012, 12(5): 2318–2323
DOI:10.1021/nl300206e      PMID:22486769     
7 Chang J, Huang X, Zhou G, et al.. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Advanced Materials, 2014, 26(5): 758–764
DOI:10.1002/adma.201302757      PMID:24115353     
8 Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7(5): 414–429
9 Kim H, Seo M, Park M H, et al.. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angewandte Chemie International Edition, 2010, 49(12): 2146–2149
DOI:10.1002/anie.200906287      PMID:20175170     
10 Chen J, Yang L, Rousidan S, et al.. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale, 2013, 5(21): 10623–10628
DOI:10.1039/c3nr03955b      PMID:24057146     
11 Jing S, Jiang H, Hu Y, et al.. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale, 2014, 6(23): 14441–14445
DOI:10.1039/C4NR05469E      PMID:25340678     
12 Wang H, Song H, Lin Z, et al.. Highly cross-linked Cu/a-Si core?shell nanowires for ultra-long cycle life and high rate lithium batteries. Nanoscale, 2016, 8(5): 2613–2619
DOI:10.1039/C5NR06985H      PMID:26572901     
13 Hao Q, Zhao D, Duan H, et al.. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries. Nanoscale, 2015, 7(12): 5320–5327
DOI:10.1039/C4NR07384C      PMID:25721441     
14 Kim H, Huang X K, Wen Z H, et al.. Novel hybrid Si film/carbon nanofibers as anode materials in lithium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(5): 1947–1952
DOI:10.1039/C4TA05804F     
15 Liu L, Lyu J, Li T, et al.. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes. Nanoscale, 2016, 8(2): 701–722
DOI:10.1039/C5NR06278K      PMID:26666682     
16 Zhao C, Luo X, Chen C, et al.. Sandwich electrode designed for high performance lithium-ion battery. Nanoscale, 2016, 8(18): 9511–9516
DOI:10.1039/C5NR09049K      PMID:27117447     
17 Yu C J, Li X, Ma T, et al.. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Advanced Energy Materials, 2012, 2(1): 68–73
DOI:10.1002/aenm.201100634     
18 Wu H, Chan G, Choi J W, et al.. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315
DOI:10.1038/nnano.2012.35      PMID:22447161     
19 Xiao X, Lu P, Ahn D. Ultrathin multifunctional oxide coatings for lithium ion batteries. Advanced Materials, 2011, 23(34): 3911–3915
DOI:10.1002/adma.201101915      PMID:21786345     
20 Guo S, Li H, Bai H, et al.. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. Journal of Power Sources, 2014, 248: 1141–1148
21 Sun F, Huang K, Qi X, et al.. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode. Nanoscale, 2013, 5(18): 8586–8592
DOI:10.1039/c3nr02435k      PMID:23893258     
22 Cras F L, Pecquenard B, Dubois V, et al.. All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Advanced Energy Materials, 2015, 5(19): 1501061
DOI:10.1002/aenm.201501061     
23 Li J, Dudney N J, Nanda J, et al.. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Applied Materials & Interfaces, 2014, 6(13): 10083–10088
DOI:10.1021/am5009419      PMID:24926882     
24 Liao J, Li Z, Wang G, et al.. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature. Physical Chemistry Chemical Physics, 2016, 18(6): 4835–4841
DOI:10.1039/C5CP07036H      PMID:26804157     
25 Wang G, Li Z, Li M, et al.. Enhanced field-emission of silver nanoparticle-graphene oxide decorated ZnO nanowire arrays. Physical Chemistry Chemical Physics, 2015, 17(47): 31822–31829
DOI:10.1039/C5CP05036G      PMID:26565977     
26 Lv S, Li Z, Chen C, et al.. Enhanced field emission performance of hierarchical ZnO/Si nanotrees with spatially branched heteroassemblies. ACS Applied Materials & Interfaces, 2015, 7(24): 13564–13568
DOI:10.1021/acsami.5b02976      PMID:26039591     
27 Yang Y, Wang Z X, Zhou R, et al.. Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. Materials Letters, 2016, 184: 65–68
28 Liu Y X, Si L, Du Y C, et al.. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium-selenium batteries. The Journal of Physical Chemistry C, 2015, 119(49): 27316–27321
29 Ruffo R, Hong S S, Chan C K, et al.. Impedance analysis of silicon nanowire lithium ion battery anodes. The Journal of Physical Chemistry C, 2009, 113(26): 11390–11398
DOI:10.1021/jp901594g     
30 Herbert E G, Tenhaeff W E, Dudney N J, et al.. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films, 2011, 520(1): 413–418
31 Fedorchenko A I, Wang A B, Cheng H H. Thickness dependence of nanofilm elastic modulus. Applied Physics Letters, 2009, 94(15): 152111
DOI:10.1063/1.3120763     
32 Choi J Y, Lee D J, Lee Y M, et al.. Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes. Advanced Functional Materials, 2013, 23(17): 2108–2114
DOI:10.1002/adfm.201202458     
33 Cho J H, Picraux S T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Letters, 2013, 13(11): 5740–5747
DOI:10.1021/nl4036498      PMID:24144166     
34 Fu K, Xue L G, Yildiz O, et al.. Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy, 2013, 2(5): 976–986
35 Cui L F, Hu L, Choi J W, et al.. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano, 2010, 4(7): 3671–3678
DOI:10.1021/nn100619m      PMID:20518567     
36 Zhu Y, Liu W, Zhang X, et al.. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries. Langmuir, 2013, 29(2): 744–749
DOI:10.1021/la304371d      PMID:23268716     
37 Wu H, Zheng G, Liu N, et al.. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Letters, 2012, 12(2): 904–909
DOI:10.1021/nl203967r      PMID:22224827     
38 Liu B, Soares P, Checkles C, et al.. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414–3419
DOI:10.1021/nl401880v      PMID:23786580     
  
1 Chan C K, Peng H, Liu G, et al.. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
https://doi.org/10.1038/nnano.2007.411 pmid: 18654447
2 Zhou X S, Yu L, Yu X Y, et al.. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Advanced Energy Materials, 2016, 6(22): 1601177
https://doi.org/10.1002/aenm.201601177
3 Zhou X, Yu L, Lou X W. Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties. Nanoscale, 2016, 8(15): 8384–8389
https://doi.org/10.1039/C6NR01272H pmid: 27045732
4 Mo R, Tung S O, Lei Z, et al.. Pushing the limits: 3D layer-by-layer assembled composites for cathodes with 160 C discharge rates. ACS Nano, 2015, 9(5): 5009–5017
https://doi.org/10.1021/nn507186k pmid: 25910177
5 Zhou X, Dai Z, Liu S, et al.. Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Advanced Materials, 2014, 26(23): 3943–3949
https://doi.org/10.1002/adma.201400173 pmid: 24664966
6 Ge M, Rong J, Fang X, et al.. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Letters, 2012, 12(5): 2318–2323
https://doi.org/10.1021/nl300206e pmid: 22486769
7 Chang J, Huang X, Zhou G, et al.. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Advanced Materials, 2014, 26(5): 758–764
https://doi.org/10.1002/adma.201302757 pmid: 24115353
8 Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7(5): 414–429
https://doi.org/10.1016/j.nantod.2012.08.004
9 Kim H, Seo M, Park M H, et al.. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angewandte Chemie International Edition, 2010, 49(12): 2146–2149
https://doi.org/10.1002/anie.200906287 pmid: 20175170
10 Chen J, Yang L, Rousidan S, et al.. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale, 2013, 5(21): 10623–10628
https://doi.org/10.1039/c3nr03955b pmid: 24057146
11 Jing S, Jiang H, Hu Y, et al.. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale, 2014, 6(23): 14441–14445
https://doi.org/10.1039/C4NR05469E pmid: 25340678
12 Wang H, Song H, Lin Z, et al.. Highly cross-linked Cu/a-Si core‒shell nanowires for ultra-long cycle life and high rate lithium batteries. Nanoscale, 2016, 8(5): 2613–2619
https://doi.org/10.1039/C5NR06985H pmid: 26572901
13 Hao Q, Zhao D, Duan H, et al.. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries. Nanoscale, 2015, 7(12): 5320–5327
https://doi.org/10.1039/C4NR07384C pmid: 25721441
14 Kim H, Huang X K, Wen Z H, et al.. Novel hybrid Si film/carbon nanofibers as anode materials in lithium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(5): 1947–1952
https://doi.org/10.1039/C4TA05804F
15 Liu L, Lyu J, Li T, et al.. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes. Nanoscale, 2016, 8(2): 701–722
https://doi.org/10.1039/C5NR06278K pmid: 26666682
16 Zhao C, Luo X, Chen C, et al.. Sandwich electrode designed for high performance lithium-ion battery. Nanoscale, 2016, 8(18): 9511–9516
https://doi.org/10.1039/C5NR09049K pmid: 27117447
17 Yu C J, Li X, Ma T, et al.. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Advanced Energy Materials, 2012, 2(1): 68–73
https://doi.org/10.1002/aenm.201100634
18 Wu H, Chan G, Choi J W, et al.. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315
https://doi.org/10.1038/nnano.2012.35 pmid: 22447161
19 Xiao X, Lu P, Ahn D. Ultrathin multifunctional oxide coatings for lithium ion batteries. Advanced Materials, 2011, 23(34): 3911–3915
https://doi.org/10.1002/adma.201101915 pmid: 21786345
20 Guo S, Li H, Bai H, et al.. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. Journal of Power Sources, 2014, 248: 1141–1148
https://doi.org/10.1016/j.jpowsour.2013.09.138
21 Sun F, Huang K, Qi X, et al.. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode. Nanoscale, 2013, 5(18): 8586–8592
https://doi.org/10.1039/c3nr02435k pmid: 23893258
22 Cras F L, Pecquenard B, Dubois V, et al.. All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Advanced Energy Materials, 2015, 5(19): 1501061
https://doi.org/10.1002/aenm.201501061
23 Li J, Dudney N J, Nanda J, et al.. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Applied Materials & Interfaces, 2014, 6(13): 10083–10088
https://doi.org/10.1021/am5009419 pmid: 24926882
24 Liao J, Li Z, Wang G, et al.. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature. Physical Chemistry Chemical Physics, 2016, 18(6): 4835–4841
https://doi.org/10.1039/C5CP07036H pmid: 26804157
25 Wang G, Li Z, Li M, et al.. Enhanced field-emission of silver nanoparticle-graphene oxide decorated ZnO nanowire arrays. Physical Chemistry Chemical Physics, 2015, 17(47): 31822–31829
https://doi.org/10.1039/C5CP05036G pmid: 26565977
26 Lv S, Li Z, Chen C, et al.. Enhanced field emission performance of hierarchical ZnO/Si nanotrees with spatially branched heteroassemblies. ACS Applied Materials & Interfaces, 2015, 7(24): 13564–13568
https://doi.org/10.1021/acsami.5b02976 pmid: 26039591
27 Yang Y, Wang Z X, Zhou R, et al.. Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. Materials Letters, 2016, 184: 65–68
https://doi.org/10.1016/j.matlet.2016.08.006
28 Liu Y X, Si L, Du Y C, et al.. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium-selenium batteries. The Journal of Physical Chemistry C, 2015, 119(49): 27316–27321
https://doi.org/10.1021/acs.jpcc.5b09553
29 Ruffo R, Hong S S, Chan C K, et al.. Impedance analysis of silicon nanowire lithium ion battery anodes. The Journal of Physical Chemistry C, 2009, 113(26): 11390–11398
https://doi.org/10.1021/jp901594g
30 Herbert E G, Tenhaeff W E, Dudney N J, et al.. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films, 2011, 520(1): 413–418
https://doi.org/10.1016/j.tsf.2011.07.068
31 Fedorchenko A I, Wang A B, Cheng H H. Thickness dependence of nanofilm elastic modulus. Applied Physics Letters, 2009, 94(15): 152111
https://doi.org/10.1063/1.3120763
32 Choi J Y, Lee D J, Lee Y M, et al.. Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes. Advanced Functional Materials, 2013, 23(17): 2108–2114
https://doi.org/10.1002/adfm.201202458
33 Cho J H, Picraux S T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Letters, 2013, 13(11): 5740–5747
https://doi.org/10.1021/nl4036498 pmid: 24144166
34 Fu K, Xue L G, Yildiz O, et al.. Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy, 2013, 2(5): 976–986
https://doi.org/10.1016/j.nanoen.2013.03.019
35 Cui L F, Hu L, Choi J W, et al.. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano, 2010, 4(7): 3671–3678
https://doi.org/10.1021/nn100619m pmid: 20518567
36 Zhu Y, Liu W, Zhang X, et al.. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries. Langmuir, 2013, 29(2): 744–749
https://doi.org/10.1021/la304371d pmid: 23268716
37 Wu H, Zheng G, Liu N, et al.. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Letters, 2012, 12(2): 904–909
https://doi.org/10.1021/nl203967r pmid: 22224827
38 Liu B, Soares P, Checkles C, et al.. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414–3419
https://doi.org/10.1021/nl401880v pmid: 23786580
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed