Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (1) : 81-88    https://doi.org/10.1007/s11706-020-0490-z
RESEARCH ARTICLE
Investigation of post-thermal annealing-induced enhancement in photovoltaic performance for squaraine-based organic solar cells
Rui ZHU2, Feiyang LIU1, Zixing WANG1, Bin WEI1, Guo CHEN1()
1. Key Laboratory of Advanced Display and System Applications (Ministry of Education), Shanghai University, Yanchang Road 149, Shanghai 200072, China
2. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
 Download: PDF(991 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, we have systematically investigated the post-thermal annealing-induced enhancement in photovoltaic performance of a 2,4-bis[4-(N, N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (DIBSQ)/C60 planar heterojunction (PHJ) organic solar cells (OSCs). An increased power conversion efficiency (PCE) of 3.28% has been realized from a DIBSQ/C60 device with thermal annealing at 100 °C for 4 min, which is about 33% enhancement compared with that of the as-cast device. The improvement of the device performance may be mainly ascribed to the crystallinity of the DIBSQ film with post-thermal annealing, which will change the DIBSQ donor and C60 acceptor interface from PHJ to hybrid planar-mixed heterojunction. This new donor–acceptor heterojunction structure will significantly improve the charge separation and charge collection efficiency, as well as the open circuit voltage (Voc) of the device, leading to an enhanced PCE. This work provides an effective strategy to improve the photovoltaic performance of SQ-based OSCs.

Keywords organic solar cell      squaraine dye      post-thermal annealing      donor/acceptor interface      power conversion efficiency     
Corresponding Author(s): Guo CHEN   
Online First Date: 02 January 2020    Issue Date: 05 March 2020
 Cite this article:   
Rui ZHU,Feiyang LIU,Zixing WANG, et al. Investigation of post-thermal annealing-induced enhancement in photovoltaic performance for squaraine-based organic solar cells[J]. Front. Mater. Sci., 2020, 14(1): 81-88.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0490-z
https://academic.hep.com.cn/foms/EN/Y2020/V14/I1/81
Fig.1  (a) The device architecture and (b) the corresponding schematic energy level diagram and the molecular structures of the DIBSQ/C60 PHJ solar cells.
Fig.2  UV-vis absorption spectra of DIBSQ (9 nm) film, C60 (40 nm) film and DIBSQ (9 nm)/C60 (40 nm) bi-layer film.
Fig.3  (a) JV characteristics under AM1.5G solar spectrum at 100 mW·cm−2 illumination and (b) EQE spectra of DIBSQ/C60 PHJ devices with post-thermal annealing treatment at various temperatures.
Temperature/°C Jsc /(mA·cm−2) Voc/V FF/% PCE/% Rs/(Ω·cm2) Rsh/(Ω·cm2)
As-cast 5.05 0.81 60 2.45 22.9 1.6×103
70 5.26 0.83 66 2.86 18.3 1.9×103
90 5.44 0.85 66 3.05 14.4 2.0×103
100 5.78 0.85 67 3.28 13.4 2.2×103
110 5.38 0.86 66 3.04 16.1 1.9×103
130 5.28 0.73 30 1.15 58.1 1.7×102
Tab.1  Device performance of DIBSQ/C60 PHJ cells with post-thermal annealing at various temperatures
Fig.4  Photovoltaic characteristics of DIBSQ/C60 PHJ solar cells with post-thermal annealing treatment at various temperatures under Am1.5G solar spectrum at 100 mW·cm−2 illumination: (a) Jsc & PCE and (b) Voc & FF versus the post-thermal annealing temperature.
Fig.5  AFM topographic and 3D images of a 9 nm-thick DIBSQ film: (a) as-cast and (b) after thermal annealing at 100 °C for 4 min.
Fig.6  XRD patterns of 9 nm-thick DIBSQ films: as-cast and after thermal annealing at various temperatures for 4 min.
Fig.7  The diagram of the DIBSQ/C60 bi-layer interface in the DIBSQ/C60 OSC device (a) before and (b) after post-thermal annealing treatment.
Fig.8  JphVeff characteristics measured at the AM1.5G condition (100 mW·cm−2) of DIBSQ/C60 PHJ devices before and after post-thermal annealing treatment.
1 G Yu, J Gao, J C Hummelen, et al.. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
https://doi.org/10.1126/science.270.5243.1789
2 Y Li. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of Chemical Research, 2012, 45(5): 723–733
https://doi.org/10.1021/ar2002446 pmid: 22288572
3 G Li, R Zhu, Y Yang. Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
https://doi.org/10.1038/nphoton.2012.11
4 Y Lin, X Zhan. Oligomer molecules for efficient organic photovoltaics. Accounts of Chemical Research, 2016, 49(2): 175–183
https://doi.org/10.1021/acs.accounts.5b00363 pmid: 26540366
5 R Yu, H Yao, Y Cui, et al.. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Advanced Materials, 2019, 31(36): 1902302
https://doi.org/10.1002/adma.201902302 pmid: 31294900
6 L Meng, Y Zhang, X Wan, et al.. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407): 1094–1098
https://doi.org/10.1126/science.aat2612 pmid: 30093603
7 Z He, B Xiao, F Liu, et al.. Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9(3): 174–179
https://doi.org/10.1038/nphoton.2015.6
8 J Huang, C Z Li, C C Chueh, et al.. 10.4% Power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration. Advanced Energy Materials, 2015, 5(15): 1500406
https://doi.org/10.1002/aenm.201500406
9 W Song, X Fan, B Xu, et al.. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Advanced Materials, 2018, 30(26): 1800075
https://doi.org/10.1002/adma.201800075 pmid: 29766587
10 G Chen, H Sasabe, T Sano, et al.. Chloroboron(III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells. Nanotechnology, 2013, 24(48): 484007
https://doi.org/10.1088/0957-4484/24/48/484007 pmid: 24196456
11 S Günes, H Neugebauer, N S Sariciftci. Conjugated polymer-based organic solar cells. Chemical Reviews, 2007, 107(4): 1324–1338
https://doi.org/10.1021/cr050149z pmid: 17428026
12 Y Huang, E J Kramer, A J Heeger, et al.. Bulk heterojunction solar cells: morphology and performance relationships. Chemical Reviews, 2014, 114(14): 7006–7043
https://doi.org/10.1021/cr400353v pmid: 24869423
13 F Padinger, R S Rittberger, N S Sariciftci. Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials, 2003, 13(1): 85–88
https://doi.org/10.1002/adfm.200390011
14 G Wei, R R Lunt, K Sun, et al.. Efficient, ordered bulk heterojunction nanocrystalline solar cells by annealing of ultrathin squaraine thin films. Nano Letters, 2010, 10(9): 3555–3559
https://doi.org/10.1021/nl1018194 pmid: 20681597
15 G Chen, D Yokoyama, H Sasabe, et al.. Optical and electrical properties of a squaraine dye in photovoltaic cells. Applied Physics Letters, 2012, 101(8): 083904
https://doi.org/10.1063/1.4747623
16 F Silvestri, M D Irwin, L Beverina, et al.. Efficient squaraine-based solution processable bulk-heterojunction solar cells. Journal of the American Chemical Society, 2008, 130(52): 17640–17641
https://doi.org/10.1021/ja8067879 pmid: 19061411
17 U Mayerhöffer, K Deing, K Gruss, et al.. Outstanding short-circuit currents in BHJ solar cells based on NIR-absorbing acceptor-substituted squaraines. Angewandte Chemie International Edition, 2009, 48(46): 8776–8779
https://doi.org/10.1002/anie.200903125 pmid: 19827069
18 D Yang, Q Yang, L Yang, et al.. Novel high performance asymmetrical squaraines for small molecule organic solar cells with a high open circuit voltage of 1.12 V. Chemical Communications, 2013, 49(89): 10465–10467
https://doi.org/10.1039/c3cc46217j pmid: 24080996
19 G Chen, H Sasabe, Z Wang, et al.. Co-evaporated bulk heterojunction solar cells with>6.0% efficiency. Advanced Materials, 2012, 24(20): 2768–2773
https://doi.org/10.1002/adma.201200234 pmid: 22513760
20 G Chen, H Sasabe, T Igarashi, et al.. Squaraine dyes for organic photovoltaic cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(28): 14517–14534
https://doi.org/10.1039/C5TA01879J
21 G Wei, S Wang, K Renshaw, et al.. Solution-processed squaraine bulk heterojunction photovoltaic cells. ACS Nano, 2010, 4(4): 1927–1934
https://doi.org/10.1021/nn100195j pmid: 20359189
22 I Jeon, J W Ryan, T Nakazaki, et al.. Air-processed inverted organic solar cells utilizing a 2-aminoethanol-stabilized ZnO nanoparticle electron transport layer that requires no thermal annealing. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(44): 18754–18760
https://doi.org/10.1039/C4TA04595E
23 G Chen, H Sasabe, X F Wang, et al.. A squaraine dye as molecular sensitizer for increasing light harvesting in polymer solar cells. Synthetic Metals, 2014, 192: 10–14
https://doi.org/10.1016/j.synthmet.2014.02.018
24 T Goh, J S Huang, K G Yager, et al.. Quaternary organic solar cells enhanced by cocrystalline squaraines with power conversion efficiencies>10%. Advanced Energy Materials, 2016, 6(21): 1600660
https://doi.org/10.1002/aenm.201600660
25 J D Zimmerman, B E Lassiter, X Xiao, et al.. Control of interface order by inverse quasi-epitaxial growth of squaraine/fullerene thin film photovoltaics. ACS Nano, 2013, 7(10): 9268–9275
https://doi.org/10.1021/nn403897d pmid: 23991668
26 D Yang, T Sano, H Sasabe, et al.. Colorful squaraines dyes for efficient solution-processed all small-molecule semitransparent organic solar cells. ACS Applied Materials & Interfaces, 2018, 10(31): 26465–26472
https://doi.org/10.1021/acsami.8b08878 pmid: 30039959
27 D Yang, H Sasabe, T Sano, et al.. Low-band-gap small molecule for efficient organic solar cells with a low energy loss below 0.6 eV and a high open-circuit voltage of over 0.9 V. ACS Energy Letters, 2017, 2(9): 2021–2025
https://doi.org/10.1021/acsenergylett.7b00608
28 J D Zimmerman, X Xiao, C K Renshaw, et al.. Independent control of bulk and interfacial morphologies of small molecular weight organic heterojunction solar cells. Nano Letters, 2012, 12(8): 4366–4371
https://doi.org/10.1021/nl302172w pmid: 22809215
29 M Q Tian, M Furuki, I Iwasa, et al.. Search for squaraine derivatives that can be sublimed without thermal decomposition. The Journal of Physical Chemistry B, 2002, 106(17): 4370–4376
https://doi.org/10.1021/jp013698r
30 P Zhang, Z Ling, G Chen, et al.. Influence of thermal annealing induced molecular aggregation on the film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye. Frontiers of Materials Science, 2018, 12(2): 139–146
https://doi.org/10.1007/s11706-018-0417-0
31 C F Lin, M Zhang, S W Liu, et al.. High photoelectric conversion efficiency of metal phthalocyanine/fullerene heterojunction photovoltaic device. International Journal of Molecular Sciences, 2011, 12(1): 476–505
https://doi.org/10.3390/ijms12010476 pmid: 21339999
32 X Xiao, J D Zimmerman, B E Lassiter, et al.. A hybrid planar-mixed tetraphenyldibenzoperiflanthene/C70 photovoltaic cell. Applied Physics Letters, 2013, 102(7): 073302
https://doi.org/10.1063/1.4793195
33 G Chen, T Wang, C Li, et al.. Enhanced photovoltaic performance in inverted polymer solar cells using Li ion doped ZnO cathode buffer layer. Organic Electronics, 2016, 36: 50–56
https://doi.org/10.1016/j.orgel.2016.05.033
34 B Wu, Z Wu, Q Yang, et al.. Improvement of charge collection and performance reproducibility in inverted organic solar cells by suppression of ZnO subgap states. ACS Applied Materials & Interfaces, 2016, 8(23): 14717–14724
https://doi.org/10.1021/acsami.6b03619 pmid: 27224960
[1] Pengpeng ZHANG, Zhitian LING, Guo CHEN, Bin WEI. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye[J]. Front. Mater. Sci., 2018, 12(2): 139-146.
[2] Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI. Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer[J]. Front. Mater. Sci., 2017, 11(3): 233-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed