Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (3) : 314-322    https://doi.org/10.1007/s11706-020-0518-4
RESEARCH ARTICLE
Non-substituted fused bis-tetracene based thin-film transistor with self-assembled monolayer hybrid dielectrics
Baolin ZHAO1(), Mikhail FEOFANOV2, Dominik LUNGERICH2,3, Hyoungwon PARK1, Tobias REJEK1, Judith WITTMANN1, Marco SARCLETTI1, Konstantin AMSHAROV2, Marcus HALIK1()
1. Organic Materials and Devices, Institute of Polymer Materials, Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF Building, Cauerstraße 3, 91058 Erlangen, Germany
2. Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
3. Molecular Technology Innovation Presidential Endowed Chair, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Tokyo, Japan
 Download: PDF(7022 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polycyclic aromatic hydrocarbons with zigzag peripheries are high perspective candidates for organic electronics. However, large fused acenes are still poorly studied due to the tedious synthesis. Herein we report a non-substituted fused bistetracene DBATT (2.3,8.9-dibenzanthanthrene) as the semiconductor on low-voltage-driven organic thin-film transistors. The systematic studies of thin-film growth on various self-assembled monolayer (SAM) modified gate dielectrics and the electrical performances were carried out. The sub-monolayer of the semiconductor film shows larger island domains on the alkyl chain SAM. This device exhibits the hole mobility of 0.011 cm2·V−1·s−1 with a current ratio of Ion/Ioff above 105.

Keywords fused bis-tetracene      organic field-effect transistor      contact resistance      self-assembled monolayer     
Corresponding Author(s): Baolin ZHAO,Marcus HALIK   
Online First Date: 28 August 2020    Issue Date: 10 September 2020
 Cite this article:   
Baolin ZHAO,Mikhail FEOFANOV,Dominik LUNGERICH, et al. Non-substituted fused bis-tetracene based thin-film transistor with self-assembled monolayer hybrid dielectrics[J]. Front. Mater. Sci., 2020, 14(3): 314-322.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0518-4
https://academic.hep.com.cn/foms/EN/Y2020/V14/I3/314
Fig.1  (a) Chemical structure of the DBATT molecule. (b) Chemical structures of SAM. Schematics of (c) BGTC transistor and (d) BGBC transistor.
Fig.2  (a) Topologies of AFM images at various nominal thickness with the tapping mode. Images are in 5 μm × 5 μm scan. (b) Height profiles of nominal 1 nm thickness of the DBATT film. Image scanning size is in 1 μm × 1 μm.
Configuration Dielectric C/(μF·cm−2) Vth/V µ/(cm2·V−1·s−1) Ion/Ioff SS/(mV·dec−1)
BGTC devices with shadow mask patterns F13-PA 0.78±0.2 −0.77 8.7×10−3 1.0×103 133
C18-PA 0.86±0.18 −1.28 5.9×10−3 6.8×102 76.9
EO15-PA 1.41±0.05 −1.39 2.7×10−3 4.8×10 86.0
AlOx 1.36±0.05 −0.96 2.0×10−3 4.1×102 98.4
BGBC devices by photo lithography patterns F13-PA 0.54±0.3 −0.24 2.4×10−3 2.0×10 1410
C18-PA 0.51±0.05 −1.64 1.1×10−2 1.3×105 103
EO15-PA 0.95±0.1 −1.70 1.4×10−3 2.7×102 290
AlOx 1.25±0.02 −1.23 2.9×10−3 3.5×103 229
Tab.1  Electrical properties of DBATT with different hybrid dielectrics (SAMs+ AlOx)
Fig.3  (a) Transfer curves of BGBC transistors with C18-PA SAM modified dielectric layer. (b) Transfer curves of BGBC transistors with different SAM modified dielectrics.
Fig.4  (a) Output curves of devices with different dielectric layers. The full line is at the gate voltage −3 V, and the dotted line is at 0 V. (b) Contact resistance and (c) average mobility of BGBC devices with different dielectric layers as a function of the channel length. All the channel width in this measurement is 100 µm.
  Fig. S1 HPLC profile of DBATT (bulk reaction) after aqueous work-up of reaction, detected at 580 nm (PBr column, toluene: methanol as fluent with volume ratio of 4:1, 1 mL·min−1, 35 °C).
  Fig. S2 MALDI-TOF MS spectrum of DBATT (top: without matrix (LDI); middle: DHB matrix; bottom: DCTB matrix).
  Fig. S3(a) Transfer curves of BGTC transistors with C18-PA SAM modified dielectric layer. (b) Transfer curves of BGTC transistors with different SAM modified dielectrics.
  Fig. S4 Time-dependent photo-oxidative decomposition study of DBATT in CH2Cl2 at room temperature after exposure to air and daylight in a timeframe of 24 h.
Dielectric SCAa/(° ) SCAb/(° ) SCAc/(° ) SEt/(mN·m−1) SEd/(mN·m−1) SEp/(mN·m−1)
F13-PA 114.5±0.4 95.9±0.4 82.7±0.9 10.93 10.01 0.92
C18-PA 105.8±0.8 74.4±0.3 51.0±0.1 22.06 21.42 0.64
EO15-PA 35.2±0.5 26.8±0.2 5.2±0.6 59.40 30.69 28.71
AlOx 79.0±1.0 47.6±0.4 17.7±0.7 36.92 31.34 5.58
  Table S1 Parameters of static contact angles and surface energies
  Fig. S5 The topologies of AFM images (1 μm × 1 μm) of nominal 1 nm thickness DBATT on dielectrics.
  Fig. S6 AFM images and roughness of SAMs+ ALD AlOx hybrid dielectric and pristine ALD AlOx.
1 M L Tang, A D Reichardt, T Okamoto, et al.. Functionalized asymmetric linear acenes for high-performance organic semiconductors. Advanced Functional Materials, 2008, 18(10): 1579–1585
https://doi.org/10.1002/adfm.200701529
2 H Klauk, M Halik, U Zschieschang, et al.. High-mobility polymer gate dielectric pentacene thin film transistors. Journal of Applied Physics, 2002, 92(9): 5259–5263
https://doi.org/10.1063/1.1511826
3 F Cicoira, C Santato, F Dinelli, et al.. Morphology and field-effect-transistor mobility in tetracene thin films. Advanced Functional Materials, 2005, 15(3): 375–380
https://doi.org/10.1002/adfm.200400278
4 J E Anthony. Functionalized acenes and heteroacenes for organic electronics. Chemical Reviews, 2006, 106(12): 5028–5048
https://doi.org/10.1021/cr050966z
5 M Watanabe, Y J Chang, S W Liu, et al.. The synthesis, crystal structure and charge-transport properties of hexacene. Nature Chemistry, 2012, 4(7): 574–578
https://doi.org/10.1038/nchem.1381 pmid: 22717444
6 C Pannemann, T Diekmann, U Hilleringmann. Degradation of organic field-effect transistors made of pentacene. Journal of Materials Research, 2004, 19(7): 1999–2002
https://doi.org/10.1557/JMR.2004.0267
7 K J Baeg, M Caironi, Y Y Noh. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Advanced Materials, 2013, 25(31): 4210–4244
https://doi.org/10.1002/adma.201205361 pmid: 23761043
8 L Zhang, A Fonari, Y Liu, et al.. Bistetracene: an air-stable, high-mobility organic semiconductor with extended conjugation. Journal of the American Chemical Society, 2014, 136(26): 9248–9251
https://doi.org/10.1021/ja503643s pmid: 24802140
9 K Sbargoud, M Mamada, T Jousselin-Oba, et al.. Low bandgap bistetracene-based organic semiconductors exhibiting air stability, high aromaticity and mobility. Chemistry, 2017, 23(21): 5076–5080
https://doi.org/10.1002/chem.201605906 pmid: 28230283
10 L Zhang, Y Cao, N S Colella, et al.. Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications. Accounts of Chemical Research, 2015, 48(3): 500–509
https://doi.org/10.1021/ar500278w pmid: 25458442
11 Z Wang, J Li, Zhanget al.. Stable 2D bisthienoacenes: Synthesis, crystal packing, and photophysical properties. Chemistry, 2018, 24(54): 14442–14447
https://doi.org/10.1002/chem.201802411 pmid: 29969163
12 E Clar. Research on the fine structure of anthanthrene and its benzologues according to the anellation procedure. Berichte der Deutschen Chemischen Gesellschaft, 1943, 76: 328–333
https://doi.org/10.1002/cber.19430760404
13 Z Wang, R Li, Y Chen, et al.. A novel angularly fused bistetracene: facile synthesis, crystal packing and single-crystal field effect transistors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(6): 1308–1312
https://doi.org/10.1039/C6TC04365H
14 D Lungerich, O Papaianina, M Feofanov, et al.. Dehydrative π-extension to nanographenes with zig–zag edges. Nature Communications, 2018, 9(1): 4756
https://doi.org/10.1038/s41467-018-07095-z pmid: 30420660
15 T Lenz, T Schmaltz, M Novak, et al.. Self-assembled monolayer exchange reactions as a tool for channel interface engineering in low-voltage organic thin-film transistors. Langmuir, 2012, 28(39): 13900–13904
https://doi.org/10.1021/la3027978 pmid: 22963322
16 D Y, Kwok A W. NeumannContact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 1999, 81(3): 167–249
https://doi.org/10.1016/S0001-8686(98)00087-6
17 A A Virkar, S Mannsfeld, Z Bao, et al.. Organic semiconductor growth and morphology considerations for organic thin-film transistors. Advanced Materials, 2010, 22(34): 3857–3875
https://doi.org/10.1002/adma.200903193 pmid: 20715062
18 J Wünsche, G Tarabella, S Bertolazzi, et al.. The correlation between gate dielectric, film growth, and charge transport in organic thin film transistors: the case of vacuum-sublimed tetracene thin films. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2013, 1(5): 967–976
https://doi.org/10.1039/C2TC00337F
19 H B Akkerman, S C B Mannsfeld, A P Kaushik, et al.. Effects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure. Journal of the American Chemical Society, 2013, 135(30): 11006–11014
https://doi.org/10.1021/ja400015e pmid: 23822850
20 M H Yoon, C Kim, A Facchetti, et al.. Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. Journal of the American Chemical Society, 2006, 128(39): 12851–12869
https://doi.org/10.1021/ja063290d pmid: 17002380
21 M Halik, H Klauk, U Zschieschang, et al.. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature, 2004, 431(7011): 963–966
https://doi.org/10.1038/nature02987 pmid: 15496917
22 T Yokota, T Kajitani, R Shidachi, et al.. A few-layer molecular film on polymer substrates to enhance the performance of organic devices. Nature Nanotechnology, 2018, 13(2): 139–144
https://doi.org/10.1038/s41565-017-0018-6 pmid: 29255288
23 D Liu, Z He, Y Su, et al.. Self-assembled monolayers of cyclohexyl-terminated phosphonic acids as a general dielectric surface for high-performance organic thin-film transistors. Advanced Materials, 2014, 26(42): 7190–7196
https://doi.org/10.1002/adma.201402822 pmid: 25205623
24 H S Lee, D H Kim, J H Cho, et al.. Effect of the phase states of self-assembled monolayers on pentacene growth and thin-film transistor characteristics. Journal of the American Chemical Society, 2008, 130(32): 10556–10564
https://doi.org/10.1021/ja800142t pmid: 18630908
25 D Ji, T Li, Y Zou, et al.. Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics. Nature Communications, 2018, 9: 2339
https://doi.org/10.1038/s41467-018-04665-z
26 S Sinha, C H Wang, M Mukherjee. Rubrene on differently treated SiO2/Si substrates: A comparative study by atomic force microscopy, X-ray absorption and photoemission spectroscopies techniques. Thin Solid Films, 2017, 638: 167–172
https://doi.org/10.1016/j.tsf.2017.07.059
27 K Sbargoud, M Mamada, T Jousselin-Oba, et al.. Low bandgap bistetracene-based organic semiconductors exhibiting air stability, high aromaticity and mobility. Chemistry, 2017, 23(21): 5076–5080
https://doi.org/10.1002/chem.201605906 pmid: 28230283
28 K Takimiya, T Yamamoto, H Ebata, et al.. Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors. Science and Technology of Advanced Materials, 2007, 8(4): 273–276
https://doi.org/10.1016/j.stam.2007.02.010
29 A Maliakal, K Raghavachari, H Katz, et al.. Photochemical stability of pentacene and a substituted pentacene in solution and in thin films. Chemistry of Materials, 2004, 16(24): 4980–4986
https://doi.org/10.1021/cm049060k
30 H Klauk, G Schmid, W Radlik, et al.. Contact resistance in organic thin film transistors. Solid-State Electronics, 2003, 47(2): 297–301
https://doi.org/10.1016/S0038-1101(02)00210-1
31 U Kraft, M Sejfić, M J Kang, et al.. Flexible low-voltage organic complementary circuits: finding the optimum combination of semiconductors and monolayer gate dielectrics. Advanced Materials, 2015, 27(2): 207–214
https://doi.org/10.1002/adma.201403481 pmid: 25330764
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed