|
|
Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review |
Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU( ) |
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract Hollow mesoporous silica nanoparticles (HMSNs) have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties, large specific surface area and facile functionalization, especially made into intelligent drug delivery systems (DDSs) for cancer therapy. HMSNs are employed to transport traditional anti-tumor drugs, which can solve the problems of drugs with instability, poor solubility and lack of recognition, etc., while significantly improving the anti-tumor effect. And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment. Actually, HMSNs-based DDSs have developed relatively mature in recent years. This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS, as well as its degradation, different stimuli-responses, targets and combination therapy. These versatile intelligent nanoparticles show great potential in clinical aspects.
|
Keywords
hollow mesoporous silica nanoparticles
intelligent drug delivery system
stimuli response
targeting drug delivery
combination therapy
|
Corresponding Author(s):
Bo LU
|
Online First Date: 20 October 2020
Issue Date: 09 December 2020
|
|
1 |
D Liu, F Yang, F Xiong, et al.. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9): 1306–1323
https://doi.org/10.7150/thno.14858
pmid: 27375781
|
2 |
Y Du, B Chen. Combination of drugs and carriers in drug delivery technology and its development. Drug Design, Development and Therapy, 2019, 13: 1401–1408
https://doi.org/10.2147/DDDT.S198056
pmid: 31118575
|
3 |
D Bobo, K J Robinson, J Islam, et al.. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 2016, 33(10): 2373–2387
https://doi.org/10.1007/s11095-016-1958-5
pmid: 27299311
|
4 |
R R Castillo, D Lozano, B González, et al.. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opinion on Drug Delivery, 2019, 16(4): 415–439
https://doi.org/10.1080/17425247.2019.1598375
pmid: 30897978
|
5 |
S H Wu, C Y Mou, H P Lin. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42(9): 3862–3875
https://doi.org/10.1039/c3cs35405a
pmid: 23403864
|
6 |
Y Li, N Li, W Pan, et al.. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Applied Materials & Interfaces, 2017, 9(3): 2123–2129
https://doi.org/10.1021/acsami.6b13876
pmid: 28004570
|
7 |
N Hao, L Li, F Tang. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews, 2017, 62(2): 57–77
https://doi.org/10.1080/09506608.2016.1190118
|
8 |
R K Kankala, H Zhang, C G Liu, et al.. Metal species-encapsulated mesoporous silica nanoparticles: current advancements and latest breakthroughs. Advanced Functional Materials, 2019, 29(43): 1902652
https://doi.org/10.1002/adfm.201902652
|
9 |
C Xu, Y Sun, Y Yu, et al.. A sequentially responsive and structure-transformable nanoparticle with a comprehensively improved ‘CAPIR cascade’ for enhanced antitumor effect. Nanoscale, 2019, 11(3): 1177–1194
https://doi.org/10.1039/C8NR08781D
pmid: 30601512
|
10 |
Y Gao, S Gu, Y Zhang, et al.. The architecture and function of monoclonal antibody-functionalized mesoporous silica nanoparticles loaded with mifepristone: repurposing abortifacient for cancer metastatic chemoprevention. Small, 2016, 12(19): 2595–2608
https://doi.org/10.1002/smll.201600550
pmid: 27027489
|
11 |
L Dai, Q Zhang, H Gu, et al.. Facile synthesis of yolk–shell silica nanoparticles for targeted tumor therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(42): 8303–8313
https://doi.org/10.1039/C5TB01620G
pmid: 32262885
|
12 |
F Tang, L Li, D Chen. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials, 2012, 24(12): 1504–1534
https://doi.org/10.1002/adma.201104763
pmid: 22378538
|
13 |
L Huang, J Liu, F Gao, et al.. A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(28): 4618–4629
https://doi.org/10.1039/C8TB00989A
pmid: 32254406
|
14 |
C Argyo, V Weiss, C Bräuchle, et al.. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chemistry of Materials, 2014, 26(1): 435–451
https://doi.org/10.1021/cm402592t
|
15 |
M Martínez-Carmona, D Lozano, M Colilla, et al.. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomaterialia, 2018, 65: 393–404
https://doi.org/10.1016/j.actbio.2017.11.007
pmid: 29127069
|
16 |
R K Kankala, Y H Han, J Na, et al.. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Advanced Materials, 2020, 32(23): 1907035
https://doi.org/10.1002/adma.201907035
pmid: 32319133
|
17 |
Z Cao, W Li, R Liu, et al.. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomedicine & Pharmacotherapy, 2019, 118: 109340 doi:10.1016/j.biopha.2019.109340
|
18 |
L Chen, X Zhou, C He. Mesoporous silica nanoparticles for tissue-engineering applications. Wiley Interdisciplinary Reviews- Nanomedicine and Nanobiotechnology, 2019, 11(6): e1573
https://doi.org/10.1002/wnan.1573
pmid: 31294533
|
19 |
T T Hoang Thi, V D Cao, T N Q Nguyen, et al.. Functionalized mesoporous silica nanoparticles and biomedical applications. Materials Science and Engineering C, 2019, 99: 631–656
https://doi.org/10.1016/j.msec.2019.01.129
pmid: 30889738
|
20 |
M Zhang, J Liu, Y Kuang, et al.. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. International Journal of Biological Macromolecules, 2017, 98: 691–700
https://doi.org/10.1016/j.ijbiomac.2017.01.136
pmid: 28174081
|
21 |
J Liu, Z Luo, J Zhang, et al.. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 2016, 83: 51–65
https://doi.org/10.1016/j.biomaterials.2016.01.008
pmid: 26773665
|
22 |
C Xu, L Cao, P Zhao, et al.. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chemical Engineering Journal, 2018, 348: 244–254
https://doi.org/10.1016/j.cej.2018.05.008
|
23 |
H Guo, S Yi, K Feng, et al.. In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chemical Engineering Journal, 2021, 403: 126432
https://doi.org/10.1016/j.cej.2020.126432
|
24 |
X Sun, N Wang, L Y Yang, et al.. Folic acid and PEI modified mesoporous silica for targeted delivery of curcumin. Pharmaceutics, 2019, 11(9): 430
https://doi.org/10.3390/pharmaceutics11090430
pmid: 31450762
|
25 |
A V Tran, K Shim, T T Vo Thi, et al.. Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomaterialia, 2018, 74: 397–413
https://doi.org/10.1016/j.actbio.2018.05.022
pmid: 29775731
|
26 |
N Song, Y W Yang. Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 2015, 44(11): 3474–3504
https://doi.org/10.1039/C5CS00243E
pmid: 25904466
|
27 |
J Wen, K Yang, F Liu, et al.. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chemical Society Reviews, 2017, 46(19): 6024–6045
https://doi.org/10.1039/C7CS00219J
pmid: 28848978
|
28 |
R K Singh, K D Patel, C Mahapatra, et al.. Combinatory cancer therapeutics with nanoceria-capped mesoporous silica nanocarriers through pH-triggered drug release and redox activity. ACS Applied Materials & Interfaces, 2019, 11(1): 288–299
https://doi.org/10.1021/acsami.8b17958
pmid: 30539634
|
29 |
Q He, J Shi. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Advanced Materials, 2014, 26(3): 391–411
https://doi.org/10.1002/adma.201303123
pmid: 24142549
|
30 |
L Palanikumar, J Kim, J Y Oh, et al.. Hyaluronic acid-modified polymeric gatekeepers on biodegradable mesoporous silica nanoparticles for targeted cancer therapy. ACS Biomaterials Science & Engineering, 2018, 4(5): 1716–1722
https://doi.org/10.1021/acsbiomaterials.8b00218
|
31 |
M Manzano, M Vallet-Regí. Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 2020, 30(2): 1902634
https://doi.org/10.1002/adfm.201902634
|
32 |
Y Fatieiev, J G Croissant, K Julfakyan, et al.. Enzymatically degradable hybrid organic–inorganic bridged silsesquioxane nanoparticles for in vitro imaging. Nanoscale, 2015, 7(37): 15046–15050
https://doi.org/10.1039/C5NR03065J
pmid: 26165456
|
33 |
J G Croissant, Y Fatieiev, K Julfakyan, et al.. Biodegradable oxamide-phenylene-based mesoporous organosilica nanoparticles with unprecedented drug payloads for delivery in cells. Chemistry, 2016, 22(42): 14806–14811
https://doi.org/10.1002/chem.201601714
pmid: 27258139
|
34 |
B Yang, Y Chen, J Shi. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering R: Reports, 2019, 137: 66–105
https://doi.org/10.1016/j.mser.2019.01.001
|
35 |
L Wang, M Huo, Y Chen, et al.. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials, 2018, 163: 1–13
https://doi.org/10.1016/j.biomaterials.2018.02.018
pmid: 29452944
|
36 |
K Lin, Y Liu, H Huang, et al.. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Journal of Materials Science: Materials in Medicine, 2015, 26(6): 197
https://doi.org/10.1007/s10856-015-5523-2
pmid: 26099345
|
37 |
L Liu, C Kong, M Huo, et al.. Schiff base interaction tuned mesoporous organosilica nanoplatforms with pH-responsive degradability for efficient anti-cancer drug delivery in vivo. Chemical Communications, 2018, 54(66): 9190–9193
https://doi.org/10.1039/C8CC05043K
pmid: 30062359
|
38 |
J Croissant, X Cattoën, M W Man, et al.. Biodegradable ethylene-bis(propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for efficient in-vitro drug delivery. Advanced Materials, 2014, 26(35): 6174–6180
https://doi.org/10.1002/adma.201401931
pmid: 25042639
|
39 |
Y Chen, Q Meng, M Wu, et al.. Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine. Journal of the American Chemical Society, 2014, 136(46): 16326–16334
https://doi.org/10.1021/ja508721y
pmid: 25343459
|
40 |
D Shao, M Li, Z Wang, et al.. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Advanced Materials, 2018, 30(29): 1801198
https://doi.org/10.1002/adma.201801198
pmid: 29808576
|
41 |
S Zhang, Z Chu, C Yin, et al.. Controllable drug release and simultaneously carrier decomposition of SiO2–drug composite nanoparticles. Journal of the American Chemical Society, 2013, 135(15): 5709–5716
https://doi.org/10.1021/ja3123015
pmid: 23496255
|
42 |
M Qian, L Chen, Y Du, et al.. Biodegradable mesoporous silica achieved via carbon nanodots-incorporated framework swelling for debris-mediated photothermal synergistic immunotherapy. Nano Letters, 2019, 19(12): 8409–8417
https://doi.org/10.1021/acs.nanolett.9b02448
pmid: 31682447
|
43 |
C Michiels, C Tellier, O Feron. Cycling hypoxia: A key feature of the tumor microenvironment. Biochimica et Biophysica Acta- Reviews on Cancer, 2016, 1866(1): 76–86 doi:10.1016/j.bbcan.2016.06.004
|
44 |
Z Li, J C Barnes, A Bosoy, et al.. Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 2012, 41(7): 2590–2605
https://doi.org/10.1039/c1cs15246g
pmid: 22216418
|
45 |
J Zhu, Y Niu, Y Li, et al.. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(7): 1339–1352
https://doi.org/10.1039/C6TB03066A
pmid: 32264626
|
46 |
L Hou, Y Zheng, Y Wang, et al.. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery. ACS Applied Materials & Interfaces, 2018, 10(26): 21927–21938
https://doi.org/10.1021/acsami.8b06998
pmid: 29932320
|
47 |
M Wang, T Wang, D Wang, et al.. Acid and light stimuli-responsive mesoporous silica nanoparticles for controlled release. Journal of Materials Science, 2019, 54(8): 6199–6211
https://doi.org/10.1007/s10853-019-03325-x
|
48 |
L Zhang, H P Bei, Y Piao, et al.. Polymer-brush-grafted mesoporous silica nanoparticles for triggered drug delivery. Chemphyschem, 2018, 19(16): 1956–1964 doi:10.1002/cphc.201800018
|
49 |
A Hakeem, F Zahid, G Zhan, et al.. Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release. International Journal of Nanomedicine, 2018, 13: 1029–1040
https://doi.org/10.2147/IJN.S146955
pmid: 29497295
|
50 |
Z Li, Y Zhang, N Feng. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opinion on Drug Delivery, 2019, 16(3): 219–237
https://doi.org/10.1080/17425247.2019.1575806
pmid: 30686075
|
51 |
S Niedermayer, V Weiss, A Herrmann, et al.. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 2015, 7(17): 7953–7964
https://doi.org/10.1039/C4NR07245F
pmid: 25865957
|
52 |
H Shi, S Liu, J Cheng, et al.. Charge-selective delivery of proteins using mesoporous silica nanoparticles fused with lipid bilayers. ACS Applied Materials & Interfaces, 2019, 11(4): 3645–3653
https://doi.org/10.1021/acsami.8b15390
pmid: 30609348
|
53 |
K Chen, C Chang, Z Liu, et al.. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111166
https://doi.org/10.1016/j.colsurfb.2020.111166
pmid: 32521461
|
54 |
M Shao, C Chang, Z Liu, et al.. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110427
https://doi.org/10.1016/j.colsurfb.2019.110427
pmid: 31408782
|
55 |
Y Kuang, H Chen, Z Chen, et al.. Poly(amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 181: 461–469
https://doi.org/10.1016/j.colsurfb.2019.05.078
pmid: 31176118
|
56 |
J Zhang, D Wu, M F Li, et al.. Multifunctional mesoporous silica nanoparticles based on charge-reversal plug-gate nanovalves and acid-decomposable ZnO quantum dots for intracellular drug delivery. ACS Applied Materials & Interfaces, 2015, 7(48): 26666–26673
https://doi.org/10.1021/acsami.5b08460
pmid: 26553405
|
57 |
L Li, W Sun, L Li, et al.. A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting. Nanoscale, 2017, 9(1): 314–325
https://doi.org/10.1039/C6NR07004C
pmid: 27910990
|
58 |
S Naz, M Wang, Y Han, et al.. Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage-targeted drug delivery. International Journal of Nanomedicine, 2019, 14: 2533–2542
https://doi.org/10.2147/IJN.S202210
pmid: 31114189
|
59 |
K Cheng, Y Zhang, Y Li, et al.. A novel pH-responsive hollow mesoporous silica nanoparticle (HMSN) system encapsulating doxorubicin (DOX) and glucose oxidase (GOX) for potential cancer treatment. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(20): 3291–3302
https://doi.org/10.1039/C8TB03198C
|
60 |
H Yang, Y Chen, Z Chen, et al.. Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomaterials Science, 2017, 5(5): 1001–1013
https://doi.org/10.1039/C7BM00043J
pmid: 28327716
|
61 |
Q S Pan, T T Chen, C P Nie, et al.. In situ synthesis of ultrathin ZIF-8 film-coated MSNs for codelivering Bcl 2 siRNA and doxorubicin to enhance chemotherapeutic efficacy in drug-resistant cancer cells. ACS Applied Materials & Interfaces, 2018, 10(39): 33070–33077
https://doi.org/10.1021/acsami.8b13393
pmid: 30203954
|
62 |
J M Estrela, A Ortega, E Obrador. Glutathione in cancer biology and therapy. Critical Reviews in Clinical Laboratory Sciences, 2006, 43(2): 143–181
https://doi.org/10.1080/10408360500523878
pmid: 16517421
|
63 |
L Sha, Q Zhao, D Wang, et al.. “Gate” engineered mesoporous silica nanoparticles for a double inhibition of drug efflux and particle exocytosis to enhance antitumor activity. Journal of Colloid and Interface Science, 2019, 535: 380–391
https://doi.org/10.1016/j.jcis.2018.09.089
pmid: 30316125
|
64 |
H M Meng, L Lu, X H Zhao, et al.. Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Analytical Chemistry, 2015, 87(8): 4448–4454
https://doi.org/10.1021/acs.analchem.5b00337
pmid: 25791340
|
65 |
R de la Rica, D Aili, M M Stevens. Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 2012, 64(11): 967–978
https://doi.org/10.1016/j.addr.2012.01.002
pmid: 22266127
|
66 |
J Liu, Q Li, J Zhang, et al.. Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice. Small, 2017, 13(9): 1602567
https://doi.org/10.1002/smll.201602567
|
67 |
W Luo, X Xu, B Zhou, et al.. Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery. Materials Science and Engineering C, 2019, 100: 855–861
https://doi.org/10.1016/j.msec.2019.03.028
pmid: 30948123
|
68 |
P Eskandari, B Bigdeli, M Porgham Daryasari, et al.. Gold-capped mesoporous silica nanoparticles as an excellent enzyme-responsive nanocarrier for controlled doxorubicin delivery. Journal of Drug Targeting, 2019, 27(10): 1084–1093
https://doi.org/10.1080/1061186X.2019.1599379
pmid: 30900473
|
69 |
Q Yan, X Guo, X Huang, et al.. Gated mesoporous silica nanocarriers for hypoxia-responsive cargo release. ACS Applied Materials & Interfaces, 2019, 11(27): 24377–24385
https://doi.org/10.1021/acsami.9b04142
pmid: 31195793
|
70 |
J J Hu, Q Lei, M Y Peng, et al.. A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials, 2017, 128: 136–146
https://doi.org/10.1016/j.biomaterials.2017.03.010
pmid: 28325685
|
71 |
Y Shu, R Song, A Zheng, et al.. Thermo/pH dual-stimuli-responsive drug delivery for chemo-/photothermal therapy monitored by cell imaging. Talanta, 2018, 181: 278–285
https://doi.org/10.1016/j.talanta.2018.01.018
pmid: 29426513
|
72 |
W Du, T Liu, F Xue, et al.. Confined nanoparticles growth within hollow mesoporous nanoreactors for highly efficient MRI-guided photodynamic therapy. Chemical Engineering Journal, 2020, 379: 122251
https://doi.org/10.1016/j.cej.2019.122251
|
73 |
S Z F Phua, C Xue, W Q Lim, et al.. Light-responsive prodrug-based supramolecular nanosystems for site-specific combination therapy of cancer. Chemistry of Materials, 2019, 31(9): 3349–3358
https://doi.org/10.1021/acs.chemmater.9b00439
|
74 |
J Pan, R Wu, X Dai, et al.. A hierarchical porous bowl-like PLA@MSNs-COOH composite for pH-dominated long-term controlled release of doxorubicin and integrated nanoparticle for potential second treatment. Biomacromolecules, 2015, 16(4): 1131–1145
https://doi.org/10.1021/bm501786t
pmid: 25714485
|
75 |
B Ryplida, G Lee, I In, et al.. Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomaterials Science, 2019, 7(6): 2600–2610
https://doi.org/10.1039/C9BM00160C
pmid: 30984942
|
76 |
C E Shi, C Q You, L Pan. Facile formulation of near-infrared light-triggered hollow mesoporous silica nanoparticles based on mitochondria targeting for on-demand chemo/photothermal/photodynamic therapy. Nanotechnology, 2019, 30(32): 325102
https://doi.org/10.1088/1361-6528/ab1367
pmid: 30913541
|
77 |
L Hai, X Jia, D He, et al.. DNA-functionalized hollow mesoporous silica nanoparticles with dual cargo loading for near-infrared-responsive synergistic chemo-photothermal treatment of cancer cells. ACS Applied Nano Materials, 2018, 1(7): 3486–3497 doi:10.1021/acsanm.8b00657
|
78 |
M Manzano, M Vallet-Regí. Mesoporous silica nanoparticles in nanomedicine applications. Journal of Materials Science: Materials in Medicine, 2018, 29(5): 65
https://doi.org/10.1007/s10856-018-6069-x
pmid: 29737405
|
79 |
C Chen, W Tang, D Jiang, et al.. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale, 2019, 11(22): 11012–11024
https://doi.org/10.1039/C9NR01385G
pmid: 31140527
|
80 |
C Park, K Lee, C Kim. Photoresponsive cyclodextrin-covered nanocontainers and their sol–gel transition induced by molecular recognition. Angewandte Chemie, 2009, 48(7): 1275–1278
https://doi.org/10.1002/anie.200803880
pmid: 19137522
|
81 |
J Yu, H Qu, T Dong, et al.. A reversible light-responsive assembly system based on host–guest interaction for controlled release. New Journal of Chemistry, 2018, 42(8): 6532–6537
https://doi.org/10.1039/C8NJ00014J
|
82 |
Y Wang, H Gu. Core–shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Advanced Materials, 2015, 27(3): 576–585
https://doi.org/10.1002/adma.201401124
pmid: 25238634
|
83 |
Q Sun, Q You, J Wang, et al.. Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Applied Materials & Interfaces, 2018, 10(2): 1963–1975
https://doi.org/10.1021/acsami.7b13651
pmid: 29276824
|
84 |
R Zhou, S Sun, C Li, et al.. Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Applied Materials & Interfaces, 2018, 10(40): 34060–34067
https://doi.org/10.1021/acsami.8b14554
pmid: 30211537
|
85 |
S Ren, J Yang, L Ma, et al.. Ternary-responsive drug delivery with activatable dual mode contrast-enhanced in vivo imaging. ACS Applied Materials & Interfaces, 2018, 10(38): 31947–31958
https://doi.org/10.1021/acsami.8b10564
pmid: 30179443
|
86 |
C A Cheng, W Chen, L Zhang, et al.. A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity focused ultrasound-stimulated cargo delivery with controllable location, time, and dose. Journal of the American Chemical Society, 2019, 141(44): 17670–17684
https://doi.org/10.1021/jacs.9b07591
pmid: 31604010
|
87 |
J L Paris, M V Cabañas, M Manzano, et al.. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano, 2015, 9(11): 11023–11033
https://doi.org/10.1021/acsnano.5b04378
pmid: 26456489
|
88 |
T S Anirudhan, A S Nair. Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(3): 428–439
https://doi.org/10.1039/C7TB02292A
pmid: 32254522
|
89 |
X Li, C Xie, H Xia, et al.. pH and ultrasound dual-responsive polydopamine-coated mesoporous silica nanoparticles for controlled drug delivery. Langmuir, 2018, 34(34): 9974–9981
https://doi.org/10.1021/acs.langmuir.8b01091
pmid: 30056720
|
90 |
J Y Zhu, D W Zheng, M K Zhang, et al.. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Letters, 2016, 16(9): 5895–5901
https://doi.org/10.1021/acs.nanolett.6b02786
pmid: 27513184
|
91 |
S K Golombek, J N May, B Theek, et al.. Tumor targeting via EPR: Strategies to enhance patient responses. Advanced Drug Delivery Reviews, 2018, 130: 17–38
https://doi.org/10.1016/j.addr.2018.07.007
pmid: 30009886
|
92 |
L Wang, X Niu, Q Song, et al.. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles. Journal of Controlled Release, 2020, 318: 197–209 doi:10.1016/j.jconrel.2019.10.017
|
93 |
T Yan, J He, R Liu, et al.. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydrate Polymers, 2020, 231: 115706
https://doi.org/10.1016/j.carbpol.2019.115706
pmid: 31888831
|
94 |
J Zhou, M Li, W Q Lim, et al.. A transferrin-conjugated hollow nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions. Theranostics, 2018, 8(2): 518–532
https://doi.org/10.7150/thno.21194
pmid: 29290824
|
95 |
H Xu, Z Wang, Y Li, et al.. Preparation and characterization of a dual-receptor mesoporous silica nanoparticle–hyaluronic acid–RGD peptide targeting drug delivery system. RSC Advances, 2016, 6(46): 40427–40435
https://doi.org/10.1039/C6RA03113G
|
96 |
J J Hu, D Xiao, X Z Zhang. Advances in peptide functionalization on mesoporous silica nanoparticles for controlled drug release. Small, 2016, 12(25): 3344–3359
https://doi.org/10.1002/smll.201600325
pmid: 27152737
|
97 |
M Wu, X Liu, H Bai, et al.. Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Applied Materials & Interfaces, 2019, 11(10): 9850–9859
https://doi.org/10.1021/acsami.9b00294
pmid: 30788951
|
98 |
Z Yu, P Zhou, W Pan, et al.. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nature Communications, 2018, 9(1): 5044
https://doi.org/10.1038/s41467-018-07197-8
pmid: 30487569
|
99 |
Z Y Wu, C C Lee, H M Lin. Hyaluronidase-responsive mesoporous silica nanoparticles with dual-imaging and dual-target function. Cancers, 2019, 11(5): 697
https://doi.org/10.3390/cancers11050697
pmid: 31137518
|
100 |
K Sun, Z Gao, Y Zhang, et al.. Enhanced highly toxic reactive oxygen species levels from iron oxide core–shell mesoporous silica nanocarrier-mediated Fenton reactions for cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(37): 5876–5887
https://doi.org/10.1039/C8TB01731J
pmid: 32254709
|
101 |
R D Teo, J Termini, H B Gray. Lanthanides: Applications in cancer diagnosis and therapy. Journal of Medicinal Chemistry, 2016, 59(13): 6012–6024
https://doi.org/10.1021/acs.jmedchem.5b01975
pmid: 26862866
|
102 |
C Huang, Z Zhang, Q Guo, et al.. A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy. Advanced Healthcare Materials, 2019, 8(19): 1900840
https://doi.org/10.1002/adhm.201900840
pmid: 31512403
|
103 |
Q Lei, W X Qiu, J J Hu, et al.. Multifunctional mesoporous silica nanoparticles with thermal-responsive gatekeeper for NIR light-triggered chemo/photothermal-therapy. Small, 2016, 12(31): 4286–4298
https://doi.org/10.1002/smll.201601137
pmid: 27376247
|
104 |
W Xu, J Qian, G Hou, et al.. Hyaluronic acid-functionalized gold nanorods with pH/NIR dual-responsive drug release for synergetic targeted photothermal chemotherapy of breast cancer. ACS Applied Materials & Interfaces, 2017, 9(42): 36533–36547
https://doi.org/10.1021/acsami.7b08700
pmid: 28975790
|
105 |
J Zhou, M Wang, Y Han, et al.. Multistage-targeted gold/mesoporous silica nanocomposite hydrogel as in situ injectable drug release system for chemophotothermal synergistic cancer therapy. ACS Applied Bio Materials, 2020, 3(1): 421–431 doi:10.1021/acsabm.9b00895
|
106 |
B Yang, S Zhou, J Zeng, et al.. Super-assembled core–shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Research, 2020, 13(4): 1013–1019
https://doi.org/10.1007/s12274-020-2736-6
|
107 |
X Liu, T Yang, Y Han, et al.. In situ growth of CuS/SiO2-based multifunctional nanotherapeutic agents for combined photodynamic/photothermal cancer therapy. ACS Applied Materials & Interfaces, 2018, 10(37): 31008–31018
https://doi.org/10.1021/acsami.8b10339
pmid: 30130088
|
108 |
R Jin, Z Liu, Y Bai, et al.. Core–satellite mesoporous silica-gold nanotheranostics for biological stimuli triggered multimodal cancer therapy. Advanced Functional Materials, 2018, 28(31): 1801961
https://doi.org/10.1002/adfm.201801961
|
109 |
G Zhao, Y Sun, X Dong. Zwitterionic polymer micelles with dual conjugation of doxorubicin and curcumin: synergistically enhanced efficacy against multidrug-resistant tumor cells. Langmuir, 2020, 36(9): 2383–2395
https://doi.org/10.1021/acs.langmuir.9b03722
pmid: 32036662
|
110 |
C Li, J Hu, W Li, et al.. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomaterials Science, 2016, 5(1): 77–88
https://doi.org/10.1039/C6BM00449K
pmid: 27822577
|
111 |
Q Liu, Y Zhou, M Li, et al.. Polyethylenimine hybrid thin-shell hollow mesoporous silica nanoparticles as vaccine self-adjuvants for cancer immunotherapy. ACS Applied Materials & Interfaces, 2019, 11(51): 47798–47809
https://doi.org/10.1021/acsami.9b19446
pmid: 31773941
|
112 |
P Zhao, L Li, S Zhou, et al.. TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Materials Science and Engineering C, 2018, 84: 108–117
https://doi.org/10.1016/j.msec.2017.11.040
pmid: 29519418
|
113 |
J Xie, W Xu, Y Wu, et al.. Macroporous organosilicon nanocomposites co-deliver Bcl2-converting peptide and chemotherapeutic agent for synergistic treatment against multidrug resistant cancer. Cancer Letters, 2020, 469: 340–354
https://doi.org/10.1016/j.canlet.2019.10.018
pmid: 31629930
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|