Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (4) : 373-386    https://doi.org/10.1007/s11706-020-0526-4
REVIEW ARTICLE
Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review
Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU()
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(1893 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hollow mesoporous silica nanoparticles (HMSNs) have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties, large specific surface area and facile functionalization, especially made into intelligent drug delivery systems (DDSs) for cancer therapy. HMSNs are employed to transport traditional anti-tumor drugs, which can solve the problems of drugs with instability, poor solubility and lack of recognition, etc., while significantly improving the anti-tumor effect. And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment. Actually, HMSNs-based DDSs have developed relatively mature in recent years. This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS, as well as its degradation, different stimuli-responses, targets and combination therapy. These versatile intelligent nanoparticles show great potential in clinical aspects.

Keywords hollow mesoporous silica nanoparticles      intelligent drug delivery system      stimuli response      targeting drug delivery      combination therapy     
Corresponding Author(s): Bo LU   
Online First Date: 20 October 2020    Issue Date: 09 December 2020
 Cite this article:   
Yimin ZHOU,Qingni XU,Chaohua LI, et al. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0526-4
https://academic.hep.com.cn/foms/EN/Y2020/V14/I4/373
Fig.1  Transmission electron microscopy images of (a) HMSNs with the core–shell structure [11], (b) HMSNs with a hollow cavity [13], and (c) MSNs [15]. (Reproduced with permission from Refs. [11,13,15])
Fig.2  Schematic diagram of therapeutic properties, morphology and degradation of PEG/rFeOx-HMSN nanoparticle. (Reproduced with permission from Ref. [35])
Fig.3  Schematic diagram for (a) construction of Schiff base-embedded silica nanoparticles, (b) preparation of prodrug nanoparticles based on S-MON, and (c) cell uptake and degradation of S-MON. (Reproduced with permission from Ref. [37])
Fig.4  (a) Schematic diagram of the preparation route of DOX@HMSNs-SS-HA, (b) Mechanism of the DOX@HMSNs-SS-HA triggering drug release. (Reproduced with permission from Ref. [13])
Fig.5  Schematic diagram of the preparation of THMSNs@LMDI and the light-stimuli triggering drug release. (Reproduced with permission from Ref. [76])
Fig.6  Synthesis route of hybrid-MSNs (top) and dual response triggering drug release from hybrid-MSNs (bottom). (Reproduced with permission from Ref. [87])
Fig.7  Schematic diagram of the synthesis process of the bionic nanoreactor HMSNs-GOx-Ce6@CPPO-PFC/O2@C. (Reproduced with permission from Ref. [98])
Fig.8  Schematic illustrations of the preparation of DOX/GOx@HMSN-PEM and the pH-responsive drug release to achieve chemotherapy combined with starvation treatment. (Reproduced with permission from Ref. [59])
1 D Liu, F Yang, F Xiong, et al.. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9): 1306–1323
https://doi.org/10.7150/thno.14858 pmid: 27375781
2 Y Du, B Chen. Combination of drugs and carriers in drug delivery technology and its development. Drug Design, Development and Therapy, 2019, 13: 1401–1408
https://doi.org/10.2147/DDDT.S198056 pmid: 31118575
3 D Bobo, K J Robinson, J Islam, et al.. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 2016, 33(10): 2373–2387
https://doi.org/10.1007/s11095-016-1958-5 pmid: 27299311
4 R R Castillo, D Lozano, B González, et al.. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opinion on Drug Delivery, 2019, 16(4): 415–439
https://doi.org/10.1080/17425247.2019.1598375 pmid: 30897978
5 S H Wu, C Y Mou, H P Lin. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42(9): 3862–3875
https://doi.org/10.1039/c3cs35405a pmid: 23403864
6 Y Li, N Li, W Pan, et al.. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Applied Materials & Interfaces, 2017, 9(3): 2123–2129
https://doi.org/10.1021/acsami.6b13876 pmid: 28004570
7 N Hao, L Li, F Tang. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews, 2017, 62(2): 57–77
https://doi.org/10.1080/09506608.2016.1190118
8 R K Kankala, H Zhang, C G Liu, et al.. Metal species-encapsulated mesoporous silica nanoparticles: current advancements and latest breakthroughs. Advanced Functional Materials, 2019, 29(43): 1902652
https://doi.org/10.1002/adfm.201902652
9 C Xu, Y Sun, Y Yu, et al.. A sequentially responsive and structure-transformable nanoparticle with a comprehensively improved ‘CAPIR cascade’ for enhanced antitumor effect. Nanoscale, 2019, 11(3): 1177–1194
https://doi.org/10.1039/C8NR08781D pmid: 30601512
10 Y Gao, S Gu, Y Zhang, et al.. The architecture and function of monoclonal antibody-functionalized mesoporous silica nanoparticles loaded with mifepristone: repurposing abortifacient for cancer metastatic chemoprevention. Small, 2016, 12(19): 2595–2608
https://doi.org/10.1002/smll.201600550 pmid: 27027489
11 L Dai, Q Zhang, H Gu, et al.. Facile synthesis of yolk–shell silica nanoparticles for targeted tumor therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(42): 8303–8313
https://doi.org/10.1039/C5TB01620G pmid: 32262885
12 F Tang, L Li, D Chen. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials, 2012, 24(12): 1504–1534
https://doi.org/10.1002/adma.201104763 pmid: 22378538
13 L Huang, J Liu, F Gao, et al.. A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(28): 4618–4629
https://doi.org/10.1039/C8TB00989A pmid: 32254406
14 C Argyo, V Weiss, C Bräuchle, et al.. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chemistry of Materials, 2014, 26(1): 435–451
https://doi.org/10.1021/cm402592t
15 M Martínez-Carmona, D Lozano, M Colilla, et al.. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomaterialia, 2018, 65: 393–404
https://doi.org/10.1016/j.actbio.2017.11.007 pmid: 29127069
16 R K Kankala, Y H Han, J Na, et al.. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Advanced Materials, 2020, 32(23): 1907035
https://doi.org/10.1002/adma.201907035 pmid: 32319133
17 Z Cao, W Li, R Liu, et al.. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomedicine & Pharmacotherapy, 2019, 118: 109340 doi:10.1016/j.biopha.2019.109340
18 L Chen, X Zhou, C He. Mesoporous silica nanoparticles for tissue-engineering applications. Wiley Interdisciplinary Reviews- Nanomedicine and Nanobiotechnology, 2019, 11(6): e1573
https://doi.org/10.1002/wnan.1573 pmid: 31294533
19 T T Hoang Thi, V D Cao, T N Q Nguyen, et al.. Functionalized mesoporous silica nanoparticles and biomedical applications. Materials Science and Engineering C, 2019, 99: 631–656
https://doi.org/10.1016/j.msec.2019.01.129 pmid: 30889738
20 M Zhang, J Liu, Y Kuang, et al.. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. International Journal of Biological Macromolecules, 2017, 98: 691–700
https://doi.org/10.1016/j.ijbiomac.2017.01.136 pmid: 28174081
21 J Liu, Z Luo, J Zhang, et al.. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 2016, 83: 51–65
https://doi.org/10.1016/j.biomaterials.2016.01.008 pmid: 26773665
22 C Xu, L Cao, P Zhao, et al.. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chemical Engineering Journal, 2018, 348: 244–254
https://doi.org/10.1016/j.cej.2018.05.008
23 H Guo, S Yi, K Feng, et al.. In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chemical Engineering Journal, 2021, 403: 126432
https://doi.org/10.1016/j.cej.2020.126432
24 X Sun, N Wang, L Y Yang, et al.. Folic acid and PEI modified mesoporous silica for targeted delivery of curcumin. Pharmaceutics, 2019, 11(9): 430
https://doi.org/10.3390/pharmaceutics11090430 pmid: 31450762
25 A V Tran, K Shim, T T Vo Thi, et al.. Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomaterialia, 2018, 74: 397–413
https://doi.org/10.1016/j.actbio.2018.05.022 pmid: 29775731
26 N Song, Y W Yang. Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 2015, 44(11): 3474–3504
https://doi.org/10.1039/C5CS00243E pmid: 25904466
27 J Wen, K Yang, F Liu, et al.. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chemical Society Reviews, 2017, 46(19): 6024–6045
https://doi.org/10.1039/C7CS00219J pmid: 28848978
28 R K Singh, K D Patel, C Mahapatra, et al.. Combinatory cancer therapeutics with nanoceria-capped mesoporous silica nanocarriers through pH-triggered drug release and redox activity. ACS Applied Materials & Interfaces, 2019, 11(1): 288–299
https://doi.org/10.1021/acsami.8b17958 pmid: 30539634
29 Q He, J Shi. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Advanced Materials, 2014, 26(3): 391–411
https://doi.org/10.1002/adma.201303123 pmid: 24142549
30 L Palanikumar, J Kim, J Y Oh, et al.. Hyaluronic acid-modified polymeric gatekeepers on biodegradable mesoporous silica nanoparticles for targeted cancer therapy. ACS Biomaterials Science & Engineering, 2018, 4(5): 1716–1722
https://doi.org/10.1021/acsbiomaterials.8b00218
31 M Manzano, M Vallet-Regí. Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 2020, 30(2): 1902634
https://doi.org/10.1002/adfm.201902634
32 Y Fatieiev, J G Croissant, K Julfakyan, et al.. Enzymatically degradable hybrid organic–inorganic bridged silsesquioxane nanoparticles for in vitro imaging. Nanoscale, 2015, 7(37): 15046–15050
https://doi.org/10.1039/C5NR03065J pmid: 26165456
33 J G Croissant, Y Fatieiev, K Julfakyan, et al.. Biodegradable oxamide-phenylene-based mesoporous organosilica nanoparticles with unprecedented drug payloads for delivery in cells. Chemistry, 2016, 22(42): 14806–14811
https://doi.org/10.1002/chem.201601714 pmid: 27258139
34 B Yang, Y Chen, J Shi. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering R: Reports, 2019, 137: 66–105
https://doi.org/10.1016/j.mser.2019.01.001
35 L Wang, M Huo, Y Chen, et al.. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials, 2018, 163: 1–13
https://doi.org/10.1016/j.biomaterials.2018.02.018 pmid: 29452944
36 K Lin, Y Liu, H Huang, et al.. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Journal of Materials Science: Materials in Medicine, 2015, 26(6): 197
https://doi.org/10.1007/s10856-015-5523-2 pmid: 26099345
37 L Liu, C Kong, M Huo, et al.. Schiff base interaction tuned mesoporous organosilica nanoplatforms with pH-responsive degradability for efficient anti-cancer drug delivery in vivo. Chemical Communications, 2018, 54(66): 9190–9193
https://doi.org/10.1039/C8CC05043K pmid: 30062359
38 J Croissant, X Cattoën, M W Man, et al.. Biodegradable ethylene-bis(propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for efficient in-vitro drug delivery. Advanced Materials, 2014, 26(35): 6174–6180
https://doi.org/10.1002/adma.201401931 pmid: 25042639
39 Y Chen, Q Meng, M Wu, et al.. Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine. Journal of the American Chemical Society, 2014, 136(46): 16326–16334
https://doi.org/10.1021/ja508721y pmid: 25343459
40 D Shao, M Li, Z Wang, et al.. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Advanced Materials, 2018, 30(29): 1801198
https://doi.org/10.1002/adma.201801198 pmid: 29808576
41 S Zhang, Z Chu, C Yin, et al.. Controllable drug release and simultaneously carrier decomposition of SiO2–drug composite nanoparticles. Journal of the American Chemical Society, 2013, 135(15): 5709–5716
https://doi.org/10.1021/ja3123015 pmid: 23496255
42 M Qian, L Chen, Y Du, et al.. Biodegradable mesoporous silica achieved via carbon nanodots-incorporated framework swelling for debris-mediated photothermal synergistic immunotherapy. Nano Letters, 2019, 19(12): 8409–8417
https://doi.org/10.1021/acs.nanolett.9b02448 pmid: 31682447
43 C Michiels, C Tellier, O Feron. Cycling hypoxia: A key feature of the tumor microenvironment. Biochimica et Biophysica Acta- Reviews on Cancer, 2016, 1866(1): 76–86 doi:10.1016/j.bbcan.2016.06.004
44 Z Li, J C Barnes, A Bosoy, et al.. Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 2012, 41(7): 2590–2605
https://doi.org/10.1039/c1cs15246g pmid: 22216418
45 J Zhu, Y Niu, Y Li, et al.. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(7): 1339–1352
https://doi.org/10.1039/C6TB03066A pmid: 32264626
46 L Hou, Y Zheng, Y Wang, et al.. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery. ACS Applied Materials & Interfaces, 2018, 10(26): 21927–21938
https://doi.org/10.1021/acsami.8b06998 pmid: 29932320
47 M Wang, T Wang, D Wang, et al.. Acid and light stimuli-responsive mesoporous silica nanoparticles for controlled release. Journal of Materials Science, 2019, 54(8): 6199–6211
https://doi.org/10.1007/s10853-019-03325-x
48 L Zhang, H P Bei, Y Piao, et al.. Polymer-brush-grafted mesoporous silica nanoparticles for triggered drug delivery. Chemphyschem, 2018, 19(16): 1956–1964 doi:10.1002/cphc.201800018
49 A Hakeem, F Zahid, G Zhan, et al.. Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release. International Journal of Nanomedicine, 2018, 13: 1029–1040
https://doi.org/10.2147/IJN.S146955 pmid: 29497295
50 Z Li, Y Zhang, N Feng. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opinion on Drug Delivery, 2019, 16(3): 219–237
https://doi.org/10.1080/17425247.2019.1575806 pmid: 30686075
51 S Niedermayer, V Weiss, A Herrmann, et al.. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 2015, 7(17): 7953–7964
https://doi.org/10.1039/C4NR07245F pmid: 25865957
52 H Shi, S Liu, J Cheng, et al.. Charge-selective delivery of proteins using mesoporous silica nanoparticles fused with lipid bilayers. ACS Applied Materials & Interfaces, 2019, 11(4): 3645–3653
https://doi.org/10.1021/acsami.8b15390 pmid: 30609348
53 K Chen, C Chang, Z Liu, et al.. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111166
https://doi.org/10.1016/j.colsurfb.2020.111166 pmid: 32521461
54 M Shao, C Chang, Z Liu, et al.. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110427
https://doi.org/10.1016/j.colsurfb.2019.110427 pmid: 31408782
55 Y Kuang, H Chen, Z Chen, et al.. Poly(amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 181: 461–469
https://doi.org/10.1016/j.colsurfb.2019.05.078 pmid: 31176118
56 J Zhang, D Wu, M F Li, et al.. Multifunctional mesoporous silica nanoparticles based on charge-reversal plug-gate nanovalves and acid-decomposable ZnO quantum dots for intracellular drug delivery. ACS Applied Materials & Interfaces, 2015, 7(48): 26666–26673
https://doi.org/10.1021/acsami.5b08460 pmid: 26553405
57 L Li, W Sun, L Li, et al.. A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting. Nanoscale, 2017, 9(1): 314–325
https://doi.org/10.1039/C6NR07004C pmid: 27910990
58 S Naz, M Wang, Y Han, et al.. Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage-targeted drug delivery. International Journal of Nanomedicine, 2019, 14: 2533–2542
https://doi.org/10.2147/IJN.S202210 pmid: 31114189
59 K Cheng, Y Zhang, Y Li, et al.. A novel pH-responsive hollow mesoporous silica nanoparticle (HMSN) system encapsulating doxorubicin (DOX) and glucose oxidase (GOX) for potential cancer treatment. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(20): 3291–3302
https://doi.org/10.1039/C8TB03198C
60 H Yang, Y Chen, Z Chen, et al.. Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomaterials Science, 2017, 5(5): 1001–1013
https://doi.org/10.1039/C7BM00043J pmid: 28327716
61 Q S Pan, T T Chen, C P Nie, et al.. In situ synthesis of ultrathin ZIF-8 film-coated MSNs for codelivering Bcl 2 siRNA and doxorubicin to enhance chemotherapeutic efficacy in drug-resistant cancer cells. ACS Applied Materials & Interfaces, 2018, 10(39): 33070–33077
https://doi.org/10.1021/acsami.8b13393 pmid: 30203954
62 J M Estrela, A Ortega, E Obrador. Glutathione in cancer biology and therapy. Critical Reviews in Clinical Laboratory Sciences, 2006, 43(2): 143–181
https://doi.org/10.1080/10408360500523878 pmid: 16517421
63 L Sha, Q Zhao, D Wang, et al.. “Gate” engineered mesoporous silica nanoparticles for a double inhibition of drug efflux and particle exocytosis to enhance antitumor activity. Journal of Colloid and Interface Science, 2019, 535: 380–391
https://doi.org/10.1016/j.jcis.2018.09.089 pmid: 30316125
64 H M Meng, L Lu, X H Zhao, et al.. Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Analytical Chemistry, 2015, 87(8): 4448–4454
https://doi.org/10.1021/acs.analchem.5b00337 pmid: 25791340
65 R de la Rica, D Aili, M M Stevens. Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 2012, 64(11): 967–978
https://doi.org/10.1016/j.addr.2012.01.002 pmid: 22266127
66 J Liu, Q Li, J Zhang, et al.. Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice. Small, 2017, 13(9): 1602567
https://doi.org/10.1002/smll.201602567
67 W Luo, X Xu, B Zhou, et al.. Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery. Materials Science and Engineering C, 2019, 100: 855–861
https://doi.org/10.1016/j.msec.2019.03.028 pmid: 30948123
68 P Eskandari, B Bigdeli, M Porgham Daryasari, et al.. Gold-capped mesoporous silica nanoparticles as an excellent enzyme-responsive nanocarrier for controlled doxorubicin delivery. Journal of Drug Targeting, 2019, 27(10): 1084–1093
https://doi.org/10.1080/1061186X.2019.1599379 pmid: 30900473
69 Q Yan, X Guo, X Huang, et al.. Gated mesoporous silica nanocarriers for hypoxia-responsive cargo release. ACS Applied Materials & Interfaces, 2019, 11(27): 24377–24385
https://doi.org/10.1021/acsami.9b04142 pmid: 31195793
70 J J Hu, Q Lei, M Y Peng, et al.. A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials, 2017, 128: 136–146
https://doi.org/10.1016/j.biomaterials.2017.03.010 pmid: 28325685
71 Y Shu, R Song, A Zheng, et al.. Thermo/pH dual-stimuli-responsive drug delivery for chemo-/photothermal therapy monitored by cell imaging. Talanta, 2018, 181: 278–285
https://doi.org/10.1016/j.talanta.2018.01.018 pmid: 29426513
72 W Du, T Liu, F Xue, et al.. Confined nanoparticles growth within hollow mesoporous nanoreactors for highly efficient MRI-guided photodynamic therapy. Chemical Engineering Journal, 2020, 379: 122251
https://doi.org/10.1016/j.cej.2019.122251
73 S Z F Phua, C Xue, W Q Lim, et al.. Light-responsive prodrug-based supramolecular nanosystems for site-specific combination therapy of cancer. Chemistry of Materials, 2019, 31(9): 3349–3358
https://doi.org/10.1021/acs.chemmater.9b00439
74 J Pan, R Wu, X Dai, et al.. A hierarchical porous bowl-like PLA@MSNs-COOH composite for pH-dominated long-term controlled release of doxorubicin and integrated nanoparticle for potential second treatment. Biomacromolecules, 2015, 16(4): 1131–1145
https://doi.org/10.1021/bm501786t pmid: 25714485
75 B Ryplida, G Lee, I In, et al.. Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomaterials Science, 2019, 7(6): 2600–2610
https://doi.org/10.1039/C9BM00160C pmid: 30984942
76 C E Shi, C Q You, L Pan. Facile formulation of near-infrared light-triggered hollow mesoporous silica nanoparticles based on mitochondria targeting for on-demand chemo/photothermal/photodynamic therapy. Nanotechnology, 2019, 30(32): 325102
https://doi.org/10.1088/1361-6528/ab1367 pmid: 30913541
77 L Hai, X Jia, D He, et al.. DNA-functionalized hollow mesoporous silica nanoparticles with dual cargo loading for near-infrared-responsive synergistic chemo-photothermal treatment of cancer cells. ACS Applied Nano Materials, 2018, 1(7): 3486–3497 doi:10.1021/acsanm.8b00657
78 M Manzano, M Vallet-Regí. Mesoporous silica nanoparticles in nanomedicine applications. Journal of Materials Science: Materials in Medicine, 2018, 29(5): 65
https://doi.org/10.1007/s10856-018-6069-x pmid: 29737405
79 C Chen, W Tang, D Jiang, et al.. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale, 2019, 11(22): 11012–11024
https://doi.org/10.1039/C9NR01385G pmid: 31140527
80 C Park, K Lee, C Kim. Photoresponsive cyclodextrin-covered nanocontainers and their sol–gel transition induced by molecular recognition. Angewandte Chemie, 2009, 48(7): 1275–1278
https://doi.org/10.1002/anie.200803880 pmid: 19137522
81 J Yu, H Qu, T Dong, et al.. A reversible light-responsive assembly system based on host–guest interaction for controlled release. New Journal of Chemistry, 2018, 42(8): 6532–6537
https://doi.org/10.1039/C8NJ00014J
82 Y Wang, H Gu. Core–shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Advanced Materials, 2015, 27(3): 576–585
https://doi.org/10.1002/adma.201401124 pmid: 25238634
83 Q Sun, Q You, J Wang, et al.. Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Applied Materials & Interfaces, 2018, 10(2): 1963–1975
https://doi.org/10.1021/acsami.7b13651 pmid: 29276824
84 R Zhou, S Sun, C Li, et al.. Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Applied Materials & Interfaces, 2018, 10(40): 34060–34067
https://doi.org/10.1021/acsami.8b14554 pmid: 30211537
85 S Ren, J Yang, L Ma, et al.. Ternary-responsive drug delivery with activatable dual mode contrast-enhanced in vivo imaging. ACS Applied Materials & Interfaces, 2018, 10(38): 31947–31958
https://doi.org/10.1021/acsami.8b10564 pmid: 30179443
86 C A Cheng, W Chen, L Zhang, et al.. A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity focused ultrasound-stimulated cargo delivery with controllable location, time, and dose. Journal of the American Chemical Society, 2019, 141(44): 17670–17684
https://doi.org/10.1021/jacs.9b07591 pmid: 31604010
87 J L Paris, M V Cabañas, M Manzano, et al.. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano, 2015, 9(11): 11023–11033
https://doi.org/10.1021/acsnano.5b04378 pmid: 26456489
88 T S Anirudhan, A S Nair. Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(3): 428–439
https://doi.org/10.1039/C7TB02292A pmid: 32254522
89 X Li, C Xie, H Xia, et al.. pH and ultrasound dual-responsive polydopamine-coated mesoporous silica nanoparticles for controlled drug delivery. Langmuir, 2018, 34(34): 9974–9981
https://doi.org/10.1021/acs.langmuir.8b01091 pmid: 30056720
90 J Y Zhu, D W Zheng, M K Zhang, et al.. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Letters, 2016, 16(9): 5895–5901
https://doi.org/10.1021/acs.nanolett.6b02786 pmid: 27513184
91 S K Golombek, J N May, B Theek, et al.. Tumor targeting via EPR: Strategies to enhance patient responses. Advanced Drug Delivery Reviews, 2018, 130: 17–38
https://doi.org/10.1016/j.addr.2018.07.007 pmid: 30009886
92 L Wang, X Niu, Q Song, et al.. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles. Journal of Controlled Release, 2020, 318: 197–209 doi:10.1016/j.jconrel.2019.10.017
93 T Yan, J He, R Liu, et al.. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydrate Polymers, 2020, 231: 115706
https://doi.org/10.1016/j.carbpol.2019.115706 pmid: 31888831
94 J Zhou, M Li, W Q Lim, et al.. A transferrin-conjugated hollow nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions. Theranostics, 2018, 8(2): 518–532
https://doi.org/10.7150/thno.21194 pmid: 29290824
95 H Xu, Z Wang, Y Li, et al.. Preparation and characterization of a dual-receptor mesoporous silica nanoparticle–hyaluronic acid–RGD peptide targeting drug delivery system. RSC Advances, 2016, 6(46): 40427–40435
https://doi.org/10.1039/C6RA03113G
96 J J Hu, D Xiao, X Z Zhang. Advances in peptide functionalization on mesoporous silica nanoparticles for controlled drug release. Small, 2016, 12(25): 3344–3359
https://doi.org/10.1002/smll.201600325 pmid: 27152737
97 M Wu, X Liu, H Bai, et al.. Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Applied Materials & Interfaces, 2019, 11(10): 9850–9859
https://doi.org/10.1021/acsami.9b00294 pmid: 30788951
98 Z Yu, P Zhou, W Pan, et al.. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nature Communications, 2018, 9(1): 5044
https://doi.org/10.1038/s41467-018-07197-8 pmid: 30487569
99 Z Y Wu, C C Lee, H M Lin. Hyaluronidase-responsive mesoporous silica nanoparticles with dual-imaging and dual-target function. Cancers, 2019, 11(5): 697
https://doi.org/10.3390/cancers11050697 pmid: 31137518
100 K Sun, Z Gao, Y Zhang, et al.. Enhanced highly toxic reactive oxygen species levels from iron oxide core–shell mesoporous silica nanocarrier-mediated Fenton reactions for cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(37): 5876–5887
https://doi.org/10.1039/C8TB01731J pmid: 32254709
101 R D Teo, J Termini, H B Gray. Lanthanides: Applications in cancer diagnosis and therapy. Journal of Medicinal Chemistry, 2016, 59(13): 6012–6024
https://doi.org/10.1021/acs.jmedchem.5b01975 pmid: 26862866
102 C Huang, Z Zhang, Q Guo, et al.. A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy. Advanced Healthcare Materials, 2019, 8(19): 1900840
https://doi.org/10.1002/adhm.201900840 pmid: 31512403
103 Q Lei, W X Qiu, J J Hu, et al.. Multifunctional mesoporous silica nanoparticles with thermal-responsive gatekeeper for NIR light-triggered chemo/photothermal-therapy. Small, 2016, 12(31): 4286–4298
https://doi.org/10.1002/smll.201601137 pmid: 27376247
104 W Xu, J Qian, G Hou, et al.. Hyaluronic acid-functionalized gold nanorods with pH/NIR dual-responsive drug release for synergetic targeted photothermal chemotherapy of breast cancer. ACS Applied Materials & Interfaces, 2017, 9(42): 36533–36547
https://doi.org/10.1021/acsami.7b08700 pmid: 28975790
105 J Zhou, M Wang, Y Han, et al.. Multistage-targeted gold/mesoporous silica nanocomposite hydrogel as in situ injectable drug release system for chemophotothermal synergistic cancer therapy. ACS Applied Bio Materials, 2020, 3(1): 421–431 doi:10.1021/acsabm.9b00895
106 B Yang, S Zhou, J Zeng, et al.. Super-assembled core–shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Research, 2020, 13(4): 1013–1019
https://doi.org/10.1007/s12274-020-2736-6
107 X Liu, T Yang, Y Han, et al.. In situ growth of CuS/SiO2-based multifunctional nanotherapeutic agents for combined photodynamic/photothermal cancer therapy. ACS Applied Materials & Interfaces, 2018, 10(37): 31008–31018
https://doi.org/10.1021/acsami.8b10339 pmid: 30130088
108 R Jin, Z Liu, Y Bai, et al.. Core–satellite mesoporous silica-gold nanotheranostics for biological stimuli triggered multimodal cancer therapy. Advanced Functional Materials, 2018, 28(31): 1801961
https://doi.org/10.1002/adfm.201801961
109 G Zhao, Y Sun, X Dong. Zwitterionic polymer micelles with dual conjugation of doxorubicin and curcumin: synergistically enhanced efficacy against multidrug-resistant tumor cells. Langmuir, 2020, 36(9): 2383–2395
https://doi.org/10.1021/acs.langmuir.9b03722 pmid: 32036662
110 C Li, J Hu, W Li, et al.. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomaterials Science, 2016, 5(1): 77–88
https://doi.org/10.1039/C6BM00449K pmid: 27822577
111 Q Liu, Y Zhou, M Li, et al.. Polyethylenimine hybrid thin-shell hollow mesoporous silica nanoparticles as vaccine self-adjuvants for cancer immunotherapy. ACS Applied Materials & Interfaces, 2019, 11(51): 47798–47809
https://doi.org/10.1021/acsami.9b19446 pmid: 31773941
112 P Zhao, L Li, S Zhou, et al.. TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Materials Science and Engineering C, 2018, 84: 108–117
https://doi.org/10.1016/j.msec.2017.11.040 pmid: 29519418
113 J Xie, W Xu, Y Wu, et al.. Macroporous organosilicon nanocomposites co-deliver Bcl2-converting peptide and chemotherapeutic agent for synergistic treatment against multidrug resistant cancer. Cancer Letters, 2020, 469: 340–354
https://doi.org/10.1016/j.canlet.2019.10.018 pmid: 31629930
[1] Hai WANG, Yu-Liang ZHAO, Guang-Jun NIE. Multifunctional nanoparticle systems for combined chemo- and photothermal cancer therapy[J]. Front Mater Sci, 2013, 7(2): 118-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed