Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (4) : 387-401    https://doi.org/10.1007/s11706-020-0531-7
REVIEW ARTICLE
Biomineralized and chemically synthesized magnetic nanoparticles: A contrast
Tanya NANDA, Ankita RATHORE, Deepika SHARMA()
Institute of Nano Science and Technology, Habitat Centre, Sector 64, Mohali 160062, India
 Download: PDF(692 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Magnetic nanoparticles (MNPs) have widely been synthesized through chemical processes for biomedical applications over the past few decades. Recently, a new class of MNPs, known as bacterial magnetosomes, has been isolated from magnetotactic bacteria, a natural source. These magnetosomes are magnetite or greigite nanocrystals which are biomineralized in the bacterial cell and provide magnet-like properties to it. Contrary to MNPs, bacterial magnetosomes are biocompatible, lower in toxicity, and can be easily cleared from the body due to the presence of a phospholipid bilayer around them. They also do not demonstrate aggregation, which makes them highly advantageous. In this review, we have provided an in-depth comparative account of bacterial magnetosomes and chemically synthesized MNPs in terms of their synthesis, properties, and biomedical applications. In addition, we have also provided a contrast on how magnetosomes might have the potential to successfully substitute synthetic MNPs in therapeutic and imaging applications.

Keywords bacterial magnetosomes      magnetic nanoparticles      iron nanoparticles      magnetotactic bacteria      magnetosomes     
Corresponding Author(s): Deepika SHARMA   
Online First Date: 24 November 2020    Issue Date: 09 December 2020
 Cite this article:   
Tanya NANDA,Ankita RATHORE,Deepika SHARMA. Biomineralized and chemically synthesized magnetic nanoparticles: A contrast[J]. Front. Mater. Sci., 2020, 14(4): 387-401.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0531-7
https://academic.hep.com.cn/foms/EN/Y2020/V14/I4/387
Fig.1  Mechanism of top-down and bottom-up approaches for chemical synthesis of MNPs.
Fig.2  Commonly used methods for the bottom-up chemical synthesis of MNPs.
Fig.3  Biomineralization and role of magnetosome membrane proteins in synthesis of BM crystals in MTB (Magnetosome proteins: MamR, MamS, MamT, MamP, MamD, MamF, MamG, MamE (protease dependent), MamC, MamM, MamN, MamO, MamK, MamJ, MamE, MamI, MamL, MamQ, MamB).
Item for comparison BMs MNPs
Physical property Ref. Physical property Ref.
Minimum particle size 10 nm [2] 6 nm [27]
Maximum particle size 250 nm (uncultured coccus) [25] 500 nm [28]
Morphology pleomorphic, pseudorectangular prismatic, tooth-shaped and cubo-octahedral [29] spherical, diamond shaped, hexagonal, parallelogram [30]
Crystal size range 10–60 nm [2] 30–35 nm [31]
Minimum zeta potential (over the complete pH range) −35 mV [32] −48 mV [33]
Maximum zeta potential (over the complete pH range) +10 mV [32] +20 mV [34]
Magnetic behavior ferromagnetic (particles in single magnetic domain range) [5] ferromagnetic [35]
super-paramagnetic (particles lower than single magnetic domain range) [36] super-paramagnetic [37]
Domain classification single magnetic domain particles [2] single domain, multi-domain, super-paramagnetic regime [2]
Nature of magnetization uniform [38] non-uniform [38]
Minimum remanence 10 emu·g−1 [2,7] 0 emu·g−1 [2]
Minimum saturation magnetization 60 emu·g−1 [2,7] 78.2 emu·g−1 [7]
Minimum coercivity 75 Oe [2] 0 Oe [2]
Maximum coercivity 300–450 Oe [39] 98 Oe [7]
Tab.1  Comparison of physical properties of BMs and MNPs [2,5,7,25,2739]
Cell line BMs MNPs Ref.
Concentration Cell viability decrease Concentration Cell viability decrease
Mouse macrophage cell line (J774) 10–150 μg·mL−1 100%–92.5% 25–200 μg·mL−1, 2 h 100%–75% [55,58]
Mouse fibroblast cells (L-929) 500–4000 μg·mL−1 100% 1000 μg·mL−1 50% [3,5960]
1300 μg·mL−1 100%
Epithelial, human breast cancer cell line (MDA MB 231) 125 μg·mL−1 3% (no AMF) 574.52 μg·mL-1 (also for Sk Br 3 and MCF 7 breast cancer cell lines) 50% [52,61]
Murine hepatic carcinoma cells (H22)/human acute promyelocytic leukemia cells (HL60)/murine mammary carcinoma cells (EMT-6) 0.5–9 μg·mL−1 30%–35% (H22); 40%–50% (HL60); no significant increase or decrease in inhibition ratio [62]
Rat mesenchymal stem cells (rMSC) 2–100 μg·mL−1, 2 d 100%–70% [63]
Mouse macrophage cells (RAW 264.7) 200 μg·mL−1, 1–4 d dose dependent [64]
Buffalo rat liver cells (BRL 3A) >250 μg·mL−1 100%–50% [65]
Telomerase-immortalized primary human fibroblasts (hTERT-BJ1) 0–1000 μg·mL−1, 24 h 25%–50% [66]
Tab.2  Comparison of cytotoxicity profiles of BMs and MNPs in vitro [3,52,55,5866]
System BMs MNPs Ref.
Concentration Toxicity effects Concentration Toxicity effects
Nude mice 100 μL suspension of 10 mg·mL−1 BM chain complete xenograft breast tumor disappearance 30 d post treatment 100 μL of ~1 mg PEG/citrate coated MNPs no disappearance of xenograft breast tumor after 30 d of treatment [52]
BALB/c mice 480 mg·kg−1 only one mouse died at highest dose of BM 180 mg·kg−1 50% mice died after 4 h of I.V. injection [57]
Holtzman rats 2000 μg·mL−1 oral administration no mortality (after 14 d) [73]
Fish (Oreochromis mossambicus) 150 μg·mL−1, 48 h no mortality LC50 = 23×10−4 mg·mL−1 (Daphnia magna) extremely sensitive and toxic to iron oxide NPs [55,74]
Tab.3  Comparison of in vivo studies of BMs and MNPs [52,55,57,7374]
Fig.4  Comparison of properties of MNPs and BMs for applications in biomedicine.
Biomedical application Properties Ref.
BMs MNPs
Magnetic hyperthermia high heating capacity; lower aggregation level lower heating capacity [7577]
Magnetic resonance imaging high contrast efficiency; better ferromagnetic behavior less ferromagnetic [7879]
Magnetic drug delivery narrow distribution; biocompatibility and membrane bound form less biocompatible [80]
Magnetic separation small size; biological membrane present no biological membrane present [8183]
Tab.4  Comparison of nature of BMs and MNPs in biomedical applications [7583]
1 Q Pankhurst, S Jones, J Dobson. Applications of magnetic nanoparticles in biomedicine: The story so far. Journal of Physics D: Applied Physics, 2016, 49(50): 501002
https://doi.org/10.1088/0022-3727/49/50/501002
2 L Han, S Li, Y Yang, et al.. Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 236–242
https://doi.org/10.1016/j.jmmm.2007.01.004
3 L Yan, S Zhang, P Chen, et al.. Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 2012, 167(9): 507–519
https://doi.org/10.1016/j.micres.2012.04.002 pmid: 22579104
4 E Alphandéry. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Frontiers in Bioengineering and Biotechnology, 2014, 2: 5
https://doi.org/10.3389/fbioe.2014.00005 pmid: 25152880
5 J J Jacob, K Suthindhiran. Magnetotactic bacteria and magnetosomes — Scope and challenges. Materials Science & Engineering C: Materials for Biological Applications, 2016, 68: 919–928
https://doi.org/10.1016/j.msec.2016.07.049 pmid: 27524094
6 J Xie, K Chen, X Y Chen. Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Research, 2009, 2(4): 261–278
https://doi.org/10.1007/s12274-009-9025-8 pmid: 20631916
7 S A Kahani, Z Yagini. A comparison between chemical synthesis magnetite nanoparticles and biosynthesis magnetite. Bioinorganic Chemistry and Applications, 2014, 2014: 384984
https://doi.org/10.1155/2014/384984 pmid: 24982609
8 S S Kalirai, D A Bazylinski, A P Hitchcock. Anomalous magnetic orientations of magnetosome chains in a magnetotactic bacterium: Magnetovibrio blakemorei strain MV-1. PLoS One, 2013, 8(1): e53368
https://doi.org/10.1371/journal.pone.0053368 pmid: 23308202
9 L Wang, Y Sun, Z Li, et al.. Bottom-up synthesis and sensor applications of biomimetic nanostructures. Materials, 2016, 9(1): 53
https://doi.org/10.3390/ma9010053 pmid: 28787853
10 G Priyadarshana, N Kottegoda, A Senaratne, et al.. Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. Journal of Nanomaterials, 2015, 2015: 1–8
https://doi.org/10.1155/2015/317312
11 J Huang, Y Li, A Orza, et al.. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Advanced Functional Materials, 2016, 26(22): 3818–3836
https://doi.org/10.1002/adfm.201504185 pmid: 27790080
12 S Dutz, R Hergt, J Mürbe, et al.. Hysteresis losses of magnetic nanoparticle powders in the single domain size range. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 305–312
https://doi.org/10.1016/j.jmmm.2006.06.005
13 A H Lu, E L Salabas, F Schüth. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 2007, 46(8): 1222–1244
https://doi.org/10.1002/anie.200602866 pmid: 17278160
14 K Woo, J Hong, S Choi, et al.. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of Materials, 2004, 16(14): 2814–2818
https://doi.org/10.1021/cm049552x
15 M Faraji, Y Yamini, M Rezaee. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 2010, 7(1): 1–37
https://doi.org/10.1007/BF03245856
16 P Tartaj, S Veintemillas-Verdaguer, T Gonzalez-Carreño, et al.. Preparation of magnetic nanoparticles for applications in biomedicine. In: Southern P, Darton N J, Ionescu A, et al., eds. Magnetic Nanoparticles in Biosensing and Medicine. Cambridge, UK: Cambridge University Press, 2019, 52–67
17 K Nejati-Koshki, M Mesgari, E Ebrahimi, et al.. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA–PEG6000 copolymers in treatment of lung cancer. Journal of Microencapsulation, 2014, 31(8): 815–823
https://doi.org/10.3109/02652048.2014.940011 pmid: 25090589
18 K Butter, K Kassapidou, G J Vroege, et al.. Preparation and properties of colloidal iron dispersions. Journal of Colloid and Interface Science, 2005, 287(2): 485–495
https://doi.org/10.1016/j.jcis.2005.02.014 pmid: 15925614
19 T J Mason, J P Lorimer. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2002
20 D Schüler, R B Frankel. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 1999, 52(4): 464–473
https://doi.org/10.1007/s002530051547 pmid: 10570793
21 J B Sun, F Zhao, T Tang, et al.. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Applied Microbiology and Biotechnology, 2008, 79(3): 389–397
https://doi.org/10.1007/s00253-008-1453-y pmid: 18425510
22 C Moisescu, S Bonneville, S Staniland, et al.. Iron uptake kinetics and magnetosome formation by Magnetospirillum gryphiswaldense as a function of pH, temperature and dissolved iron availability. Geomicrobiology Journal, 2011, 28(7): 590–600
https://doi.org/10.1080/01490451.2011.594146
23 A Komeili. Molecular mechanisms of magnetosome formation. Annual Review of Biochemistry, 2007, 76(1): 351–366
https://doi.org/10.1146/annurev.biochem.74.082803.133444 pmid: 17371202
24 H A Lowenstam. Minerals formed by organisms. Science, 1981, 211(4487): 1126–1131
https://doi.org/10.1126/science.7008198 pmid: 7008198
25 I Penninga, H de Waard, B M Moskowitz, et al.. Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. Journal of Magnetism and Magnetic Materials, 1995, 149(3): 279–286
https://doi.org/10.1016/0304-8853(95)00078-X
26 A Arakaki, H Nakazawa, M Nemoto, et al.. Formation of magnetite by bacteria and its application. Journal of the Royal Society, Interface, 2008, 5(26): 977–999
https://doi.org/10.1098/rsif.2008.0170 pmid: 18559314
27 H S Dehsari, A H Ribeiro, B Ersöez, et al.. Effect of precursor concentration on size evolution of iron oxide nanoparticles. CrystEngComm, 2017, 19(44): 6694–6702
https://doi.org/10.1039/C7CE01406F
28 T Sugimoto, ed. Fine Particles: Synthesis, Characterization, and Mechanism of Growth. New York, USA: Marcel Dekker, Inc., 2000
29 G Wegner. Biomineralization: Progress in biology, molecular biology and application, 2nd revised ed. Edited by E. Bäuerlein. ChemBioChem, 2005, 6(4): 762–763
https://doi.org/10.1002/cbic.200500033
30 H Mamiya. Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. Journal of Nanomaterials, 2013, 2013: 752973
https://doi.org/10.1155/2013/752973
31 M Nidhin, R Indumathy, K J Sreeram, et al.. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 2008, 31(1): 93–96
https://doi.org/10.1007/s12034-008-0016-2
32 F R S Atta-ur-Rahman, M I Choudhary, eds. Frontiers in Anti-Cancer Drug Discovery. UAE: Bentham Science Publisher, 2013
33 L Qi, X Lv, T Zhang, et al.. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Scientific Reports, 2016, 6(1): 26961
https://doi.org/10.1038/srep26961 pmid: 27246808
34 R A Bini, R F Marques, F J Santos, et al.. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes. Journal of Magnetism and Magnetic Materials, 2012, 324(4): 534–539
https://doi.org/10.1016/j.jmmm.2011.08.035
35 C Justin, S A Philip, A V Samrot. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience, 2017, 7(7): 463–475
https://doi.org/10.1007/s13204-017-0583-x
36 D A Bazylinski, S Schübbe. Controlled biomineralization by and application of magnetotactic bacteria. In: Laskin A I, Sariaslani S, Gadd G M, eds. Advances in Applied Microbiology (Volume 62). San Diego, CA, USA: Elsevier Inc., 2007, 21‒62
37 J Zhou, N Gan, T Li, et al.. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosensors & Bioelectronics, 2014, 54: 199–206
https://doi.org/10.1016/j.bios.2013.10.044 pmid: 24280050
38 J Sun, Y Li, X J Liang, et al.. Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multifunctions. Journal of Nanomaterials, 2011, 2011: 469031
https://doi.org/10.1155/2011/469031 pmid: 22448162
39 R E Dunin-Borkowski, M R McCartney, R B Frankel, et al.. Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 1998, 282(5395): 1868–1870
https://doi.org/10.1126/science.282.5395.1868 pmid: 9836632
40 B Kiani, D Faivre, S Klumpp. Elastic properties of magnetosome chains. New Journal of Physics, 2015, 17(4): 043007
https://doi.org/10.1088/1367-2630/17/4/043007
41 U Lins, M R McCartney, M Farina, et al.. Habits of magnetosome crystals in coccoid magnetotactic bacteria. Applied and Environmental Microbiology, 2005, 71(8): 4902–4905
https://doi.org/10.1128/AEM.71.8.4902-4905.2005 pmid: 16085893
42 T Sugimoto, E Matijevic. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of Colloid and Interface Science, 1980, 74(1): 227–243
https://doi.org/10.1016/0021-9797(80)90187-3
43 J P Jolivet. Metal Oxide Chemistry and Synthesis: From Solutions to Solid State. New York, USA: John Wiley & Sons, Ltd., 2000
44 K Nishio, M Ikeda, N Gokon, et al.. Preparation of size-controlled (30–100 nm) magnetite nanoparticles for biomedical applications. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2408–2410
https://doi.org/10.1016/j.jmmm.2006.10.795
45 D A Bazylinski, A J Garratt-Reed, R B Frankel. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Research and Technique, 1994, 27(5): 389–401
https://doi.org/10.1002/jemt.1070270505 pmid: 8018991
46 D L Balkwill, D Maratea, R P Blakemore. Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 1980, 141(3): 1399–1408
47 U Lins, F Freitas, C N Keim, et al.. Electron spectroscopic imaging of magnetotactic bacteria: Magnetosome morphology and diversity. Microscopy and Microanalysis, 2000, 6(5): 463–470
https://doi.org/10.1007/S100050010047 pmid: 11003681
48 K Butter, A Hoell, A Wiedenmann, et al.. Small-angle neutron and X-ray scattering of dispersions of oleic-acid-coated magnetic iron particles. Journal of Applied Crystallography, 2004, 37(6): 847–856
https://doi.org/10.1107/S0021889804018564
49 B M Moskowitz, R B Frankel, P Flanders, et al.. Magnetic properties of magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 1988, 73(3): 273–288
https://doi.org/10.1016/0304-8853(88)90093-5
50 A E Deatsch, B A Evans. Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 2014, 354: 163–172
https://doi.org/10.1016/j.jmmm.2013.11.006
51 Y Liu, G R Li, F F Guo, et al.. Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microbial Cell Factories, 2010, 9(1): 99
https://doi.org/10.1186/1475-2859-9-99 pmid: 21144001
52 E Alphandéry, S Faure, O Seksek, et al.. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 2011, 5(8): 6279–6296
https://doi.org/10.1021/nn201290k pmid: 21732678
53 C Martinez-Boubeta, K Simeonidis, A Makridis, et al.. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Scientific Reports, 2013, 3(1): 1652
https://doi.org/10.1038/srep01652 pmid: 23576006
54 A Józefczak, B Leszczyński, A Skumiel, et al.. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions. Journal of Magnetism and Magnetic Materials, 2016, 407: 92–100
https://doi.org/10.1016/j.jmmm.2016.01.054
55 T Revathy, M A Jayasri, K Suthindhiran. Toxicity assessment of magnetosomes in different models. 3 Biotech, 2017, 7: 126 (11 pages)
https://doi.org/10.1007/s13205-017-0780-z
56 V Patravale, P Dandekar, R Jain. Nanoparticulate Drug Delivery: Perspectives on the Transition from Laboratory to Market. Cambridge, UK: Woodhead Publishing Limited, 2012, 123–155
https://doi.org/10.1533/9781908818195.123
57 R Liu, J Liu, J Tong, et al.. Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Progress in Natural Science, 2012, 22(1): 31–39
https://doi.org/10.1016/j.pnsc.2011.12.006
58 S Naqvi, M Samim, M Z Abdin, et al.. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine, 2010, 5: 983–989
https://doi.org/10.2147/IJN.S13244 pmid: 21187917
59 X Li, B Wang, H Jin, et al.. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. The Journal of Gene Medicine, 2007, 9(8): 679–690
https://doi.org/10.1002/jgm.1068 pmid: 17605136
60 S Balasubramanian, A R Girija, Y Nagaoka, et al.. Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. International Journal of Nanomedicine, 2014, 9: 437–459
https://doi.org/10.2147/IJN.S49882 pmid: 24531392
61 A Chalkidou, K Simeonidis, M Angelakeris, et al.. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. Journal of Magnetism and Magnetic Materials, 2011, 323(6): 775–780
https://doi.org/10.1016/j.jmmm.2010.10.043
62 J Sun, T Tang, J Duan, et al.. Biocompatibility of bacterial magnetosomes: acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology, 2010, 4(3): 271–283
https://doi.org/10.3109/17435391003690531 pmid: 20795909
63 G J Delcroix, M Jacquart, L Lemaire, et al.. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Research, 2009, 1255: 18–31
https://doi.org/10.1016/j.brainres.2008.12.013 pmid: 19103182
64 F Hu, K G Neoh, L Cen, et al.. Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules, 2006, 7(3): 809–816
https://doi.org/10.1021/bm050870e pmid: 16529418
65 S M Hussain, K L Hess, J M Gearhart, et al.. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 2005, 19(7): 975–983
https://doi.org/10.1016/j.tiv.2005.06.034 pmid: 16125895
66 A K Gupta, A S G Curtis. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. Journal of Materials Science: Materials in Medicine, 2004, 15(4): 493–496
https://doi.org/10.1023/B:JMSM.0000021126.32934.20
67 J B Sun, J H Duan, S L Dai, et al.. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Letters, 2007, 258(1): 109–117
https://doi.org/10.1016/j.canlet.2007.08.018 pmid: 17920762
68 Han Lei, S Y Li, Yang Yong, et al.. Research on the structure and performance of bacterial magnetic nanoparticles. Journal of Biomaterials Applications, 2008, 22(5): 433–448
https://doi.org/10.1177/0885328207079064 pmid: 17623711
69 L Xiaoming, S C Lee, S Zhang, et al.. Biocompatibility and toxicity of nanobiomaterials. Journal of Nanomaterials, 2012, 2012: 591278
70 A Derfus, W Chan, S Bhatia. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Advanced Materials, 2004, 16(12): 961–966
https://doi.org/10.1002/adma.200306111
71 A Vonarbourg, C Passirani, P Saulnier, et al.. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 2006, 27(24): 4356–4373
https://doi.org/10.1016/j.biomaterials.2006.03.039 pmid: 16650890
72 J A Kim, H J Lee, H J Kang, et al.. The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles. Biomedical Microdevices, 2009, 11(1): 287–296
https://doi.org/10.1007/s10544-008-9235-y pmid: 18836835
73 P Dandekar, R Dhumal, R Jain, et al.. Toxicological evaluation of pH-sensitive nanoparticles of curcumin: Acute, sub-acute and genotoxicity studies. Food and Chemical Toxicology, 2010, 48(8–9): 2073–2089
https://doi.org/10.1016/j.fct.2010.05.008 pmid: 20470854
74 A García, R Espinosa, L Delgado, et al.. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination, 2011, 269(1–3): 136–141
https://doi.org/10.1016/j.desal.2010.10.052
75 M Timko, A Dzarova, J Kovac, et al.. Magnetic properties and heating effect in bacterial magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, 321(10): 1521–1524
https://doi.org/10.1016/j.jmmm.2009.02.077
76 R Hergt, R Hiergeist, M Zeisberger, et al.. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 80–86
https://doi.org/10.1016/j.jmmm.2005.01.047
77 E Alphandéry, F Guyot, I Chebbi. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. International Journal of Pharmaceutics, 2012, 434(1–2): 444–452
https://doi.org/10.1016/j.ijpharm.2012.06.015 pmid: 22698862
78 L L Hu, F Zhang, Z Wang, et al.. Comparison of the 1H NMR relaxation enhancement produced by bacterial magnetosomes and synthetic iron oxide nanoparticles for potential use as MR molecular probes. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 822–825
https://doi.org/10.1109/TASC.2010.2041218
79 Z Xiang, X Yang, J Xu, et al.. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials, 2017, 115: 53–64
https://doi.org/10.1016/j.biomaterials.2016.11.022 pmid: 27888699
80 V V Mody, A Singh, B Wesley. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. European Journal of Nanomedicine, 2013 doi:10.1515/ejnm-2012-0008
81 D S Grouzdev, M V Dziuba, D V Kurek, et al.. Optimized method for preparation of IgG-binding bacterial magnetic nanoparticles. PLoS One, 2014, 9(10): e109914
https://doi.org/10.1371/journal.pone.0109914 pmid: 25333971
82 M Takahashi, T Yoshino, T Matsunaga. Surface modification of magnetic nanoparticles using asparagines-serine polypeptide designed to control interactions with cell surfaces. Biomaterials, 2010, 31(18): 4952–4957
https://doi.org/10.1016/j.biomaterials.2010.02.048 pmid: 20363023
83 T Matsunaga, M Takahashi, T Yoshino, et al.. Magnetic separation of CD14+ cells using antibody binding with protein A expressed on bacterial magnetic particles for generating dendritic cells. Biochemical and Biophysical Research Communications, 2006, 350(4): 1019–1025
https://doi.org/10.1016/j.bbrc.2006.09.145 pmid: 17045961
84 M Bañobre-López, A Teijeiro, J Rivas. Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 2013, 18(6): 397–400
https://doi.org/10.1016/j.rpor.2013.09.011 pmid: 24416585
85 E Bender, T Schramm. Instruments for facilitation and improvement of procedures in cell and tissue cultivation. 2. Roller arrangement according to the prefabricated construction system, lifting arrangement for pressure filters and semi-automatic feeding device. Zeitschrift fur Medizinische Labortechnik, 1966, 7(6): 365–369
pmid: 4860210
86 R Strom, C Crifo, A Rossi-Fanelli, et al.. Biochemical aspects of heat sensitivity of tumour cells. In: Rossi-Fanelli A, Cavaliere R, Mondovì B, eds. Recent Results in Cancer Research: Selective Heat Sensitivity of Cancer Cells. Berlin, Germany: Springer-Verlag, 1977, 7–35
https://doi.org/10.1007/978-3-642-81080-0 pmid: 331418
87 J B Sun, Z L Wang, J H Duan, et al.. Targeted distribution of bacterial magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 in healthy Sprague-Dawley rats. Journal of Nanoscience and Nanotechnology, 2009, 9(3): 1881–1885
https://doi.org/10.1166/jnn.2009.410 pmid: 19435053
88 M A Brown, R C Semelka. MRI: Basic Principles and Applications. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003, 33–48
89 D G Mitchell, M S Cohen. MRI Principles. 2nd ed. Philadelphia, PA, USA: W. B. Saunders Company, 2004
90 T Orlando, S Mannucci, E Fantechi, et al.. Characterization of magnetic nanoparticles from Magnetospirillum gryphiswaldense as potential theranostics tools. Contrast Media & Molecular Imaging, 2016, 11(2): 139–145
https://doi.org/10.1002/cmmi.1673
91 A Kraupner, D Eberbeck, D Heinke, et al.. Bacterial magnetosomes — nature’s powerful contribution to MPI tracer research. Nanoscale, 2017, 9(18): 5788–5793
https://doi.org/10.1039/C7NR01530E pmid: 28447690
92 S Mériaux, M Boucher, B Marty, et al.. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Advanced Healthcare Materials, 2015, 4(7): 1076–1083
https://doi.org/10.1002/adhm.201400756 pmid: 25676134
93 K J Widder, R M Morris, G Poore, et al.. Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(1): 579–581
https://doi.org/10.1073/pnas.78.1.579 pmid: 6941258
94 S K Pulfer, J M Gallo. Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. Journal of Drug Targeting, 1998, 6(3): 215–227
https://doi.org/10.3109/10611869808997896 pmid: 9888308
95 S Yalcin, G Unsoy, P Mutlu, et al.. Polyhydroxybutyrate-coated magnetic nanoparticles for doxorubicin delivery: cytotoxic effect against doxorubicin-resistant breast cancer cell line. American Journal of Therapeutics, 2014, 21(6): 453–461
https://doi.org/10.1097/MJT.0000000000000066 pmid: 25137407
96 U O Häfeli, J S Riffle, L Harris-Shekhawat, et al.. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Molecular Pharmaceutics, 2009, 6(5): 1417–1428
https://doi.org/10.1021/mp900083m pmid: 19445482
97 R Long, Y Liu, Q Dai, et al.. A natural bacterium-produced membrane-bound nanocarrier for drug combination therapy. Materials, 2016, 9(11): 889
https://doi.org/10.3390/ma9110889 pmid: 28774010
98 Y G Liu, Q L Dai, S B Wang, et al.. Preparation and in vitro antitumor effects of cytosine arabinoside-loaded genipin-poly-l-glutamic acid-modified bacterial magnetosomes. International Journal of Nanomedicine, 2015, 10: 1387–1397
https://doi.org/10.2147/IJN.S76123 pmid: 25733831
99 T Yoshino, H Hirabe, M Takahashi, et al.. Magnetic cell separation using nano-sized bacterial magnetic particles with reconstructed magnetosome membrane. Biotechnology and Bioengineering, 2008, 101(3): 470–477
https://doi.org/10.1002/bit.21912 pmid: 18421798
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed