Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (1) : 124-137    https://doi.org/10.1007/s11706-021-0534-z
RESEARCH ARTICLE
Twofold bioinspiration of TiO2-PDA hybrid fabrics with desirable robustness and remarkable polar/nonpolar liquid separation performance
Guopeng CHEN1, Shuwen CHEN1, Xinyi ZHANG1, Fuchao YANG1(), Jing FU1,2
1. Key Laboratory for the Green Preparation and Application of Functional Materials (MOE), Hubei University, Wuhan 430062, China
2. School of Chemistry and Environment Engineering, Wuhan Institute of Technology, Wuhan 430205, China
 Download: PDF(3225 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The fundamental relationship between microstructure, constituent, processing and performances of separating materials is really a vital issue. Traditional preparation methods for separation membranes are complex, time-consuming and easy to be fouled. Also, the durability of conventional coatings on membrane is poor. By combination of bioinspiration from mussel adhesive and fish scales’ underwater superoleophobicity, we propose a general route to prepare organic–inorganic hybrid coatings, while no complex apparatus is needed. Specifically, based on the biomimetic adhesion of polydopamine (PDA), we used it as a binder to adhere TiO2 nanoparticles and built rough microstructure on fabric. In this way, we obtained TiO2-PDA treated fabric with special wettability. These TiO2-PDA treated samples owned superamphiphilicity in air, underwater superoleophobicity (underwater oil contact angles (OCAs)>150°), underoil superhydrophobicity (underoil water contact angles (WCAs)>150°), excellent multi-resistance; and can separate polar/nonpolar liquid mixture effectively. It also owned superaerophobicity underwater (underwater bubble contact angles (BCAs)>150°). The proposed TiO2-PDA coatings are highly expected to be employed for real situation of water pollution remediation, self-cleaning, oil extraction and harsh chemical engineering issues.

Keywords polydopamine      TiO2-PDA fabric      polar/nonpolar separation      underwater superoleophobicity      superamphiphilicity     
Corresponding Author(s): Fuchao YANG   
Online First Date: 03 February 2021    Issue Date: 11 March 2021
 Cite this article:   
Guopeng CHEN,Shuwen CHEN,Xinyi ZHANG, et al. Twofold bioinspiration of TiO2-PDA hybrid fabrics with desirable robustness and remarkable polar/nonpolar liquid separation performance[J]. Front. Mater. Sci., 2021, 15(1): 124-137.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0534-z
https://academic.hep.com.cn/foms/EN/Y2021/V15/I1/124
Fig.1  Diagram of modified fabric and oxidation self-polymerization mechanism for PDA under alkalescence condition (pH= 9.0).
Fig.2  (a) The process flowchart of the TiO2-PDA treated fabric. (b)(c)(d) Optical photographs of the original, the PDA treated fabric, and the TiO2-PDA treated fabric (from the left to the right).
Fig.3  (a) WCA and (b) OCA in air for sample 6. (c) WCA underoil for samples. (d) OCA underwater for samples. (e)(f)(g) Images of underwater OCAs for the original, the PDA treated, and the TiO2-PDA treated fabrics (from left to right).
Fig.4  Characterization of TiO2-PDA coatings: (a)(b)(c) SEM images of the TiO2-PDA treated fabric; (d) EDS spectrum and (e) element relative atomic ratios of the TiO2-PDA treated fabric; (f) AFM scanning result of TiO2-PDA on the silicon substrate; (g) Elemental distributions of the TiO2-PDA fabric surface.
Fig.5  (a) XPS survey, (b) XPS spectrum of the Ti 2p peak and (c) XPS spectrum of the N 1s peak of original and TiO2-PDA treated fabrics. (d) XRD patterns of original and TiO2-PDA treated fabrics. (e) TG and (f) DTG curves of original and TiO2-PDA treated fabrics.
Solvent Polarity value Dipole moment (D)
1,2-dichloroethane 3.5 1.80
n-hexane 0.1 0
acetone 5.4 2.88
benzene 3 0
ethanol 4.6 1.69
tetrachloride 1.6 0
isooctane 0.1 0
petroleum ether 0.01 N.A.
water 10.2 1.85
ethylene glycol 6.9 2.28
Tab.1  Polarity values and dipole moments of solvents involved in this work (extracted from Lange’s Handbook of Chemistry)
Fig.6  (a) Nonpolar oil/polar water separation mechanism after pre-wetting by nonpolar oil or polar water. (b) Separation efficiency and flux of separating water from nonpolar oil/polar water mixture vs. cycle number. (c) Separation efficiency and flux of separating nonpolar oil from polar/nonpolar liquid mixture vs. cycle number.
Fig.7  The wettability of bubble droplet with a volume of (a) 6 μL, (b) 7 μL and (c) 8 μL underwater, and (d) its scientific understanding of interfacial interactions.
Fig.8  (a) Photographs of the abrasion process. (b) OCA underwater of TiO2-PDA treated fabric after every 5 cycles. (c) Photographs of the chemical durability test process. (d) OCA underwater of TiO2-PDA treated fabric after 7 d immersion of four different kinds of oils. ①, ②, ③, and ④ represent n-hexane, isooctane, 1,2-dichloroethane, and petroleum ether, respectively.
Fig.9  Photocatalytic degradation of MB dye using the TiO2-PDA treated fabric: (a) UV–vis spectra of the MB solution at different degradation time; (b) Time-dependent reduction curve of MB with the insert showing photographs of the MB solution before and after the degradation.
Fig.10  (a) WCA and (b) OCA in air for sample 10. (c) WCAs underoil for three different samples. (d) OCAs underwater for three different samples.
1 Y Si, Z Dong, L Jiang. Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Central Science, 2018, 4(9): 1102–1112
https://doi.org/10.1021/acscentsci.8b00504 pmid: 30276243
2 N Liu, Y Chen, F Lu, et al.. Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. ChemPhysChem, 2013, 14(15): 3489–3494
https://doi.org/10.1002/cphc.201300691 pmid: 24106053
3 J Li, L Yan, H Li, et al.. Underwater superoleophobic palygorskite coated meshes for efficient oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(28): 14696–14702
https://doi.org/10.1039/C5TA02870A
4 E Kontturi, P Laaksonen, M B Linder, et al.. Advanced materials through assembly of nanocelluloses. Advanced Materials, 2018, 30(24): 1703779
https://doi.org/10.1002/adma.201703779
5 P Huang, F Wu, B Shen, et al.. Biomimetic porous polypropylene foams with special wettability properties. Composites Part B: Engineering, 2020, 190: 107927
https://doi.org/10.1016/j.compositesb.2020.107927
6 Y Si, Z Guo. Superwetting materials of oil–water emulsion separation. Chemistry Letters, 2015, 44(7): 874–883
https://doi.org/10.1246/cl.150223
7 Y Peng, Z Guo. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(41): 15749–15770
https://doi.org/10.1039/C6TA06922C
8 A V Dudchenko, J Rolf, L Shi, et al.. Coupling underwater superoleophobic membranes with magnetic pickering emulsions for fouling-free separation of crude oil/water mixtures: An experimental and theoretical study. ACS Nano, 2015, 9(10): 9930–9941
https://doi.org/10.1021/acsnano.5b04880 pmid: 26422748
9 W Zhang, Y Zhu, X Liu, et al.. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angewandte Chemie International Edition, 2014, 53(3): 856–860
https://doi.org/10.1002/anie.201308183 pmid: 24307602
10 T Arumugham, N J Kaleekkal, D Rana, et al.. Separation of oil/water emulsions using nano MgO anchored hybrid ultrafiltration membranes for environmental abatement. Journal of Applied Polymer Science, 2016, 133(1): 42848
https://doi.org/10.1002/app.42848
11 Y Zhao, M Zhang, Z Wang. Underwater superoleophobic membrane with enhanced oil–water separation, antimicrobial, and antifouling activities. Advanced Materials Interfaces, 2016, 3(13): 1500664
https://doi.org/10.1002/admi.201500664
12 S Wang, K Liu, X Yao, et al.. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chemical Reviews, 2015, 115(16): 8230–8293
https://doi.org/10.1021/cr400083y pmid: 26244444
13 M Padaki, R S Murali, M S Abdullah, et al.. Membrane technology enhancement in oil–water separation. A review. Desalination, 2015, 357: 197–207
https://doi.org/10.1016/j.desal.2014.11.023
14 M Liu, S Wang, Z Wei, et al.. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Advanced Materials, 2009, 21(6): 665–669
https://doi.org/10.1002/adma.200801782
15 C Chen, D Weng, A Mahmood, et al.. Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Applied Materials & Interfaces, 2019, 11(11): 11006–11027
https://doi.org/10.1021/acsami.9b01293 pmid: 30811172
16 L Tie, J Li, M Liu, et al.. Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(25): 11682–11687
https://doi.org/10.1039/C8TA02933D
17 Z Xu, Y Zhao, H Wang, et al.. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil–water separation. Angewandte Chemie International Edition, 2015, 54(15): 4527–4530
https://doi.org/10.1002/anie.201411283 pmid: 25694216
18 B Ge, G Ren, H Yang, et al.. Fabrication of BiOBr-silicone aerogel photocatalyst in an aqueous system with degradation performance by sol–gel method. Science China: Technological Sciences, 2020, 63(5): 859–865
https://doi.org/10.1007/s11431-019-1499-x
19 M Liu, J Li, Y Hou, et al.. Inorganic adhesives for robust superwetting surfaces. ACS Nano, 2017, 11(1): 1113–1119
https://doi.org/10.1021/acsnano.6b08348 pmid: 28045252
20 Y Kuang, C Chen, G Chen, et al.. Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil. Advanced Functional Materials, 2019, 29(16): 1900162
https://doi.org/10.1002/adfm.201900162
21 W Zheng, H Fan, L Wang, et al.. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir, 2015, 31(42): 11671–11677
https://doi.org/10.1021/acs.langmuir.5b02757 pmid: 26442969
22 F Guo, Q Wen, Y Peng, et al.. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(41): 21866–21874
https://doi.org/10.1039/C7TA05599D
23 Y Liu, K Ai, L Lu. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 2014, 114(9): 5057–5115
https://doi.org/10.1021/cr400407a pmid: 24517847
24 X Lv, Y Jiao, S Wu, et al.. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning. ACS Applied Materials & Interfaces, 2019, 11(22): 20574–20580
https://doi.org/10.1021/acsami.9b06849 pmid: 31090393
25 J Yong, S C Singh, Z Zhan, et al.. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water. ACS Applied Materials & Interfaces, 2019, 11(8): 8667–8675
https://doi.org/10.1021/acsami.8b21465 pmid: 30698002
26 J Huo, Q Yang, J Yong, et al.. Underwater superaerophobicity/superaerophilicity and unidirectional bubble passage based on the femtosecond laser-structured stainless steel mesh. Advanced Materials Interfaces, 2020, 7(14): 1902128
https://doi.org/10.1002/admi.201902128
27 N F Della Vecchia, A Luchini, A Napolitano, et al.. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 2014, 30(32): 9811–9818
https://doi.org/10.1021/la501560z pmid: 25066905
28 Z Xue, Y Cao, N Liu, et al.. Special wettable materials for oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(8): 2445–2460
https://doi.org/10.1039/C3TA13397D
29 B Wang, W Liang, Z Guo, et al.. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 2015, 44(1): 336–361
https://doi.org/10.1039/C4CS00220B pmid: 25311259
30 Z Liu, D Qin, J Zhao, et al.. Efficient oil/water separation membrane derived from super-flexible and superhydrophilic core–shell organic/inorganic nanofibrous architectures. Polymers, 2019, 11(6): 974
https://doi.org/10.3390/polym11060974 pmid: 31163636
31 M Salomäki, L Marttila, H Kivelä, et al.. Effects of pH and oxidants on the first steps of polydopamine formation: A thermodynamic approach. The Journal of Physical Chemistry B, 2018, 122(24): 6314–6327
https://doi.org/10.1021/acs.jpcb.8b02304 pmid: 29787272
32 J Liebscher, R Mrówczyński, H A Scheidt, et al.. Structure of polydopamine: A never-ending story? Langmuir, 2013, 29(33): 10539–10548
https://doi.org/10.1021/la4020288 pmid: 23875692
33 J Zhao, J Xu, X Jian, et al.. NIR light-driven photocatalysis on amphiphilic TiO2 nanotubes for controllable drug release. ACS Applied Materials & Interfaces, 2020, 12(20): 23606–23616
https://doi.org/10.1021/acsami.0c04260 pmid: 32356964
34 Z X Wang, H C Yang, F He, et al.. Mussel-inspired surface engineering for water-remediation materials. Matter, 2019, 1(1): 115–155
https://doi.org/10.1016/j.matt.2019.05.002
35 X Lin, Y Chen, N Liu, et al.. In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO2 nanocluster-based mesh. Nanoscale, 2016, 8(16): 8525–8529
https://doi.org/10.1039/C6NR01119E pmid: 27071799
36 T Ikoma, H Kobayashi, J Tanaka, et al.. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Journal of Structural Biology, 2003, 142(3): 327–333
https://doi.org/10.1016/S1047-8477(03)00053-4 pmid: 12781659
37 T Peng, J Zhang, S Ray, et al.. Optimizing one-dimensional TiO2 for photocatalytic hydrogen production from a water–ethanol mixture and other electron donors. Journal of Environmental Chemical Engineering, 2019, 7(1): 102868
https://doi.org/10.1016/j.jece.2018.102868
38 R I Bickley, T Gonzalez-Carreno, J S Lees, et al.. A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 1991, 92(1): 178–190
https://doi.org/10.1016/0022-4596(91)90255-G
39 S Kang, M Baginska, S R White, et al.. Core–shell polymeric microcapsules with superior thermal and solvent stability. ACS Applied Materials & Interfaces, 2015, 7(20): 10952–10956
https://doi.org/10.1021/acsami.5b02169 pmid: 25923539
40 J H Chen, Y Zhou, C L Zhou, et al.. A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation. Chemical Engineering Journal, 2019, 370: 1218–1227
https://doi.org/10.1016/j.cej.2019.03.220
41 Y C Jung, B Bhushan. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir, 2009, 25(24): 14165–14173
https://doi.org/10.1021/la901906h pmid: 19637877
42 G Karagounis. Separation of polar from non-polar molecules. Nature, 1948, 161(4100): 855
https://doi.org/10.1038/161855a0
43 X Shan, J Liu, H Mu, et al.. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angewandte Chemie International Edition, 2020, 59(4): 1659–1665
pmid: 32356964
44 Z Zheng, H Yang, Y Cao, et al.. Laser-induced wettability gradient surface of the aluminum matrix used for directional transportation and collection of underwater bubbles. ACS Omega, 2020, 5(1): 718–725
https://doi.org/10.1021/acsomega.9b03349 pmid: 31956822
45 M Y Chen, Z H Jia, T Zhang, et al.. Self-transport of underwater bubbles on a microholed hydrophobic surface with gradient wettability. Soft Matter, 2018, 14(36): 7462–7468
https://doi.org/10.1039/C8SM01056K pmid: 30175356
46 M Liang, C He, J Dai, et al.. A high-strength double network polydopamine nanocomposite hydrogel for adhesion under seawater. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(36): 8232–8241
https://doi.org/10.1039/D0TB00513D pmid: 32667027
47 C Cheng, S Li, S Nie, et al.. General and biomimetic approach to biopolymer-functionalized graphene oxide nanosheet through adhesive dopamine. Biomacromolecules, 2012, 13(12): 4236–4246
https://doi.org/10.1021/bm3014999 pmid: 23152977
48 M A Fox, C C Chen, J N N Younathan. Oxidative cleavage of substituted naphthalenes induced by irradiated semiconductor powders. Journal of Organic Chemistry, 1984, 49(11): 1969–1974
https://doi.org/10.1021/jo00185a027
49 A M Atta, N O Shaker, N E Maysour. Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Progress in Organic Coatings, 2006, 56(2–3): 100–110
https://doi.org/10.1016/j.porgcoat.2005.12.004
50 L Ma, J He, J Wang, et al.. Functionalized superwettable fabric with switchable wettability for efficient oily wastewater purification, in situ chemical reaction system separation, and photocatalysis degradation. ACS Applied Materials & Interfaces, 2019, 11(46): 43751–43765
https://doi.org/10.1021/acsami.9b15952 pmid: 31659888
51 C Liu, R Takagi, T Shintani, et al.. Organic liquid mixture separation using an aliphatic polyketone-supported polyamide organic solvent reverse osmosis (OSRO) membrane. ACS Applied Materials & Interfaces, 2020, 12(6): 7586–7594
https://doi.org/10.1021/acsami.9b21519 pmid: 31967779
52 B Ge, L Han, B Gao, et al.. A mesoporous SiO2/TiO2 composite used for various emulsions separation. Separation Science and Technology, 2019, 54(6): 962–969
https://doi.org/10.1080/01496395.2018.1521424
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed