Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (1) : 36-53    https://doi.org/10.1007/s11706-021-0543-y
REVIEW ARTICLE
Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review
Miao QIN1, Mengjie XU1, Lulu NIU3, Yizhu CHENG1, Xiaolian NIU1, Jinlong KONG1, Xiumei ZHANG1, Yan WEI1,2, Di HUANG1,2()
1. Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3. Wellead Medical Co. Ltd., Guangzhou 511434, China
 Download: PDF(1980 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the rapid improvements in nanomaterials and imaging technology, great progresses have been made in diagnosis and treatment of diseases during the past decades. Fe3O4 magnetic nanoparticles (MNPs) with good biocompatibility and superparamagnetic property are usually used as contrast agent for diagnosis of diseases in magnetic resonance imaging (MRI). Currently, the combination of multiple imaging technologies has been considered as new tendency in diagnosis and treatment of diseases, which could enhance the accuracy and reliability of disease diagnosis and provide new strategies for disease treatment. Therefore, novel contrast agents used for multifunctional imaging are urgently needed. Fe3O4 MNPs are believed to be a potential candidate for construction of multifunctional platform in diagnosis and treatment of diseases. In recent years, there are a plethora of studies concerning the construction of multifunctional platform presented based on Fe3O4 MNPs. In this review, we introduce fabrication methods and modification strategies of Fe3O4 MNPs, expecting great improvements for diagnosis and treatment of diseases in the future.

Keywords Fe3O4 MNPs      preparation methods      modification strategy      multifunctional platform     
Corresponding Author(s): Di HUANG   
Online First Date: 07 February 2021    Issue Date: 11 March 2021
 Cite this article:   
Miao QIN,Mengjie XU,Lulu NIU, et al. Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review[J]. Front. Mater. Sci., 2021, 15(1): 36-53.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0543-y
https://academic.hep.com.cn/foms/EN/Y2021/V15/I1/36
Fig.1  (a) Schematic illustration of the reactor. Reproduced with permission from Ref. [49]. (b) Schematic illustration of the growth mechanism. Reproduced with permission from Ref. [49].
Precursor T/°C Surfactant η t/h δ/(°C·min−1) Size/nm Shape State Ref.
Iron oleate 290 OA 0 1 10 4–6 SC monodisperse, SC [51]
320 OA 0 1, 10 10 6–10 spherical monodisperse, SC [51]
320 OA 25:1 24 10 13–24 spherical & cubic monodisperse, SC [51]
260 OA 2:1 24 3.3 9 spherical polydisperse, PC [37]
320 OA 2:1 0.5 3.3 12 spherical monodisperse, SC [37]
Iron pentacarbonyl 283 OA 2:1 1.5 immediately 14 spherical & cubic monodisperse, SC [51]
Iron oxyhydroxide 320 OA 15:1 24 15 22–33 spherical & facetted monodisperse, SC [51]
Iron acetylacetonate 300 OAm 26:1 1 20 3–6 spherical monodisperse, SC [52]
265 OA & OAm 5:1 a) 2 immediately 9 spherical & cubic monodisperse, SC [53]
Iron glucuronate 320 OA 1.2:1 0.5 immediately 11 cubic monodisperse, SC [54]
Tab.1  The shape and the size of Fe3O4 MNPs at different reaction parameters [37,5154]
Method Advantages Disadvantages Surface property Ref.
Co-precipitation simple and easy to operate, low needs of reaction conditions wide range of particles size and poor dispersity hydrophilia [36]
Thermal decomposition high degree of crystallinity and narrow distribution of particles size hydrophobicity of products, danger for operator hydrophobicity [37]
Hydrothermal high purity and magnetism of products high requirements for reaction conditions hydrophilia [39]
Microemulsion simple experimental devices, easy to manipulate low crystallinity of products, low productivity and poor monodispersity hydrophilia or hydrophobicity [38]
Solvothermal high degree of crystallinity and monodispersity hydrophobicity of products hydrophobicity [66]
Sol–gel simple experimental equipment, good monodispersity low controllability, release of toxic organic substances during reaction hydrophobicity [65]
Vapor deposition simple devices, easy to control, high purity and good dispersity low productivity, high cost and difficult for collection of products hydrophilia [32]
Ultrasound good dispersity, easy to operate wide distribution of particle size hydrophilia [67]
Mechanical crushing low cost, high productivity, simple devices wide distribution of particle size, large particle size hydrophilia [68]
Tab.2  The comparison on different methods of Fe3O4 MNPs preparation [32,3639,6568]
Fig.2  Multifunctional modification strategies for Fe3O4 MNPs.
Fig.3  (a) Schematic drawing of the antiphagocytosis 99mTc-labeled Fe3O4 NPs and the diagnosis principle for tumors. Reproduced with permission from Ref. [110]. (b) Schematic illustration of RIA for diagnosis of small HCC. Reproduced with permission from Ref. [111]. (c) Schematic illustration of dual-ratiometric target-triggered fluorescent probe for diagnosis of tumors. Reproduced with permission from Ref. [112].
Fig.4  (a) The design principle of GdIO NPs. Reproduced with permission from Ref. [114]. (b) The design principle of MnO/Fe3O4 NPs. Reproduced with permission from Ref. [115]. (c) Structure and function of Fe3O4@PEG-PLGA MCs. Reproduced with permission from Ref. [116]. (d) Structure and function of Fe3O4@SiO2-Au-Alexa Fluor 647-cRGD NPs. Reproduced with permission from Ref. [118].
Fig.5  (a) Schematic illustration of Fe3O4@SiO2-Glu NPs synthesis. Reproduced with permission from Ref. [119]. (b) Schematic illustration of MFION-based engineering of MSCs for the recovery post-ischemic stroke. Reproduced with permission from Ref. [120]. (c) Schematic of the formation of AAV-MnMEIO hybrid NPs. Reproduced with permission from Ref. [121].
Fig.6  (a) The fabrication and function of Fe3O4/MCPC. Reproduced with permission from Ref. [123]. (b) Schematic illustration of MPNA design concept. Reproduced with permission from Ref. [124]. (c) Schematic illustration of MPNA preparation. Reproduced with permission from Ref. [124]. (d) The fabrication of GSH-responsive magnetic Au NWs. Reproduced with permission from Ref. [125]. (e) The application mechanism of magnetic Au NWs. Reproduced with permission from Ref. [125].
1 N Lewinski, V Colvin, R Drezek. Cytotoxicity of nanoparticles. Small, 2008, 4(1): 26–49
https://doi.org/10.1002/smll.200700595 pmid: 18165959
2 P Formoso, R Muzzalupo, L Tavano, et al.. Nanotechnology for the environment and medicine. Mini-Reviews in Medicinal Chemistry, 2016, 16(8): 668–675
https://doi.org/10.2174/1389557515666150709105129 pmid: 26955878
3 N Hoshyar, S Gray, H B Han, et al.. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 2016, 11(6): 673–692
https://doi.org/10.2217/nnm.16.5 pmid: 27003448
4 O C Farokhzad, R Langer. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16–20
https://doi.org/10.1021/nn900002m pmid: 19206243
5 S C Baetke, T Lammers, F Kiessling. Applications of nanoparticles for diagnosis and therapy of cancer. The British Journal of Radiology, 2015, 88(1054): 20150207
https://doi.org/10.1259/bjr.20150207 pmid: 25969868
6 J Gupta. Nanotechnology applications in medicine and dentistry. Journal of Investigative and Clinical Dentistry, 2011, 2(2): 81–88
https://doi.org/10.1111/j.2041-1626.2011.00046.x pmid: 25426600
7 A Zhang, C M Lieber. Nano-bioelectronics. Chemical Reviews, 2016, 116(1): 215–257
https://doi.org/10.1021/acs.chemrev.5b00608 pmid: 26691648
8 M R Angle, B Cui, N A Melosh. Nanotechnology and neurophysiology. Current Opinion in Neurobiology, 2015, 32: 132–140
https://doi.org/10.1016/j.conb.2015.03.014 pmid: 25889532
9 A Noy. Bionanoelectronics. Advanced Materials, 2011, 23(7): 807–820
https://doi.org/10.1002/adma.201003751 pmid: 21328478
10 F D Guerra, M F Attia, D C Whitehead, et al.. Nanotechnology for environmental remediation: Materials and applications. Molecules, 2018, 23(7): 1760
https://doi.org/10.3390/molecules23071760 pmid: 30021974
11 X Hu, J Xu, C Wu, et al.. Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(VI) decontamination: Performance, modelling, and fractional factorial design. PLoS One, 2017, 12(10): e0187166
https://doi.org/10.1371/journal.pone.0187166 pmid: 29084287
12 S Ma, S Zhan, Y Jia, et al.. Superior antibacterial activity of Fe3O4–TiO2 nanosheets under solar light. ACS Applied Materials & Interfaces, 2015, 7(39): 21875–21883
https://doi.org/10.1021/acsami.5b06264 pmid: 26372171
13 R Sadeghi, R J Rodriguez, Y Yao, et al.. Advances in nanotechnology as they pertain to food and agriculture: Benefits and risks. Annual Review of Food Science and Technology, 2017, 8(1): 467–492
https://doi.org/10.1146/annurev-food-041715-033338 pmid: 28125343
14 I Iavicoli, V Leso, D H Beezhold, et al.. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 2017, 329: 96–111
https://doi.org/10.1016/j.taap.2017.05.025 pmid: 28554660
15 G Das, J K Patra, S Paramithiotis, et al.. The sustainability challenge of food and environmental nanotechnology: Current status and imminent perceptions. International Journal of Environmental Research and Public Health, 2019, 16(23): 4848
https://doi.org/10.3390/ijerph16234848 pmid: 31810271
16 M Rossi, D Passeri, A Sinibaldi, et al.. Nanotechnology for food packaging and food quality assessment. Advances in Food and Nutrition Research, 2017, 82: 149–204
https://doi.org/10.1016/bs.afnr.2017.01.002 pmid: 28427532
17 M Wei, W D Le. The role of nanomaterials in autophagy. Advances in Experimental Medicine and Biology, 2019, 1206: 273–286
https://doi.org/10.1007/978-981-15-0602-4_14 pmid: 31776991
18 R Mohammadinejad, M A Moosavi, S Tavakol, et al.. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 2019, 15(1): 4–33
https://doi.org/10.1080/15548627.2018.1509171 pmid: 30160607
19 K El-Boubbou. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine, 2018, 13(8): 929–952
https://doi.org/10.2217/nnm-2017-0320 pmid: 29546817
20 C Song, W Sun, Y Xiao, et al.. Ultrasmall iron oxide nanoparticles: Synthesis, surface modification, assembly, and biomedical applications. Drug Discovery Today, 2019, 24(3): 835–844
https://doi.org/10.1016/j.drudis.2019.01.001 pmid: 30639557
21 A K Gupta, M Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18): 3995–4021
https://doi.org/10.1016/j.biomaterials.2004.10.012 pmid: 15626447
22 Y Yuan, Z Ding, J Qian, et al.. Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis. Nano Letters, 2016, 16(4): 2686–2691
https://doi.org/10.1021/acs.nanolett.6b00331 pmid: 27031226
23 Y Chen, Q Zhou, X Li, et al.. Ultrasmall paramagnetic iron oxide nanoprobe targeting epidermal growth factor receptor for in vivo magnetic resonance imaging of hepatocellular carcinoma. Bioconjugate Chemistry, 2017, 28(11): 2794–2803
https://doi.org/10.1021/acs.bioconjchem.7b00501 pmid: 28972742
24 J Huang, L Wang, X Zhong, et al.. Facile non-hydrothermal synthesis of oligosaccharides coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effect. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(33): 5344–5351
https://doi.org/10.1039/C4TB00811A pmid: 25181490
25 P Martinkova, M Brtnicky, J Kynicky, et al.. Iron oxide nanoparticles: Innovative tool in cancer diagnosis and therapy. Advanced Healthcare Materials, 2018, 7(5): 1700932
https://doi.org/10.1002/adhm.201700932 pmid: 29205944
26 R Qiao, Q Jia, J Zeng, et al.. Magnetic iron oxide nanoparticles and their applications in magnetic resonance imaging. Acta Biophysica Sinica, 2011, 27(4): 272–288 (in Chinese)
https://doi.org/10.3724/SP.J.1260.2011.00272
27 R Das, N Rinaldi-Montes, J Alonso, et al.. Boosted hyperthermia therapy by combined ac magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers. ACS Applied Materials & Interfaces, 2016, 8(38): 25162–25169
https://doi.org/10.1021/acsami.6b09942 pmid: 27589410
28 O S Nielsen, M Horsman, J Overgaard. A future for hyperthermia in cancer treatment? European Journal of Cancer, 2001, 37(13): 1587–1589
https://doi.org/10.1016/S0959-8049(01)00193-9 pmid: 11527682
29 T Vangijzegem, D Stanicki, S Laurent. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opinion on Drug Delivery, 2019, 16(1): 69–78
https://doi.org/10.1080/17425247.2019.1554647 pmid: 30496697
30 R Tietze, J Zaloga, H Unterweger, et al.. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 2015, 468(3): 463–470
https://doi.org/10.1016/j.bbrc.2015.08.022 pmid: 26271592
31 X Hu, M Ma, M Zeng, et al.. Supercritical carbon dioxide anchored Fe3O4 nanoparticles on graphene foam and lithium battery performance. ACS Applied Materials & Interfaces, 2014, 6(24): 22527–22533
https://doi.org/10.1021/am5066255 pmid: 25438281
32 V Harnchana, S Chaiyachad, S Pimanpang, et al.. Hierarchical Fe3O4-reduced graphene oxide nanocomposite grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Scientific Reports, 2019, 9: 1494
https://doi.org/10.1038/s41598-018-38050-z pmid: 30728432
33 T Niemiec, M Dudek, N Dziekan, et al.. The method of coating Fe3O4 with carbon nanoparticles to modify biological properties of oxide measured in vitro. Journal of AOAC International, 2017, 100(4): 905–915
https://doi.org/10.5740/jaoacint.17-0165 pmid: 28623660
34 S S Chen, H Xu, H J Xu, et al.. A facile ultrasonication assisted method for Fe3O4@SiO2–Ag nanospheres with excellent antibacterial activity. Dalton Transactions, 2015, 44(19): 9140–9148
https://doi.org/10.1039/C5DT00977D pmid: 25901793
35 Z Jiao, Y Zhang, H Fan. Ultrasonic-microwave method in preparation of polypyrrole-coated magnetic particles for vitamin D extraction in milk. Journal of Chromatography A, 2016, 1457: 7–13
https://doi.org/10.1016/j.chroma.2016.06.041 pmid: 27371018
36 H Montaseri, S Alipour, M A Vakilinezhad. Development, evaluation and optimization of superparamagnetite nanoparticles prepared by co-precipitation method. Research in Pharmaceutical Sciences, 2017, 12(4): 274–282
https://doi.org/10.4103/1735-5362.212044 pmid: 28855938
37 J Park, K An, Y Hwang, et al.. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 2004, 3(12): 891–895
https://doi.org/10.1038/nmat1251 pmid: 15568032
38 X Yu, G Cheng, M D Zhou, et al.. On-demand one-step synthesis of monodisperse functional polymeric microspheres with droplet microfluidics. Langmuir, 2015, 31(13): 3982–3992
https://doi.org/10.1021/acs.langmuir.5b00617 pmid: 25782525
39 P Li, L Li, Y Zhao, et al.. Selective binding and magnetic separation of histidine-tagged proteins using Fe3O4/Cu-apatite nanoparticles. Journal of Inorganic Biochemistry, 2016, 156: 49–54
https://doi.org/10.1016/j.jinorgbio.2015.12.017 pmid: 26773852
40 A H Lu, E L Salabas, F Schüth. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition in English, 2007, 46(8): 1222–1244
https://doi.org/10.1002/anie.200602866 pmid: 17278160
41 D Ling, N Lee, T Hyeon. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Accounts of Chemical Research, 2015, 48(5): 1276– 1285
https://doi.org/10.1021/acs.accounts.5b00038 pmid: 25922976
42 J Park, N R Kadasala, S A Abouelmagd, et al.. Polymer–iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials, 2016, 101: 285–295
https://doi.org/10.1016/j.biomaterials.2016.06.007 pmid: 27310916
43 W J Syu, C C Huang, J K Hsiao, et al.. Co-precipitation synthesis of near-infrared iron oxide nanocrystals on magnetically targeted imaging and photothermal cancer therapy via photoablative protein denature. Nanotheranostics, 2019, 3(3): 236–254
https://doi.org/10.7150/ntno.24124 pmid: 31263656
44 L Gan, Z Lu, D Cao, et al.. Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Materials Science and Engineering C, 2018, 82: 41–45
https://doi.org/10.1016/j.msec.2017.08.073 pmid: 29025673
45 H Wang, X Zhao, W Meng, et al.. Cetyltrimethylammonium bromide-coated Fe3O4 magnetic nanoparticles for analysis of 15 trace polycyclic aromatic hydrocarbons in aquatic environments by ultraperformance, liquid chromatography with fluorescence detection. Analytical Chemistry, 2015, 87(15): 7667–7675
https://doi.org/10.1021/acs.analchem.5b01077 pmid: 26153060
46 H Nosrati, M Salehiabar, H K Manjili, et al.. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. International Journal of Biological Macromolecules, 2018, 108: 909–915
https://doi.org/10.1016/j.ijbiomac.2017.10.180 pmid: 29101048
47 M Anbarasu, M Anandan, E Chinnasamy, et al.. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochimica Acta Part A: Molecular Spectroscopy, 2015, 135: 536–539
https://doi.org/10.1016/j.saa.2014.07.059 pmid: 25123943
48 C Li. A targeted approach to cancer imaging and therapy. Nature Materials, 2014, 13(2): 110–115
https://doi.org/10.1038/nmat3877 pmid: 24452345
49 A P LaGrow, M O Besenhard, A Hodzic, et al.. Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution. Nanoscale, 2019, 11(14): 6620–6628
https://doi.org/10.1039/C9NR00531E pmid: 30896010
50 Y W Jun, Y M Huh, J S Choi, et al.. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal of the American Chemical Society, 2005, 127(16): 5732–5733
https://doi.org/10.1021/ja0422155 pmid: 15839639
51 R Hufschmid, H Arami, R M Ferguson, et al.. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale, 2015, 7(25): 11142–11154
https://doi.org/10.1039/C5NR01651G pmid: 26059262
52 H Guo, Y Zhang, W Liang, et al.. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery. Journal of Inorganic Biochemistry, 2019, 192: 72–81
https://doi.org/10.1016/j.jinorgbio.2018.12.002 pmid: 30612028
53 F B Effenberger, R A Couto, P K Kiyohara, et al.. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate. Nanotechnology, 2017, 28(11): 115603
https://doi.org/10.1088/1361-6528/aa5ab0 pmid: 28192283
54 V Patsula, L Kosinová, M Lovrić, et al.. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Applied Materials & Interfaces, 2016, 8(11): 7238–7247
https://doi.org/10.1021/acsami.5b12720 pmid: 26928653
55 I A Barbosa, P C de Sousa Filho, D L da Silva, et al.. Metalloporphyrins immobilized in Fe3O4@SiO2 mesoporous submicrospheres: Reusable biomimetic catalysts for hydrocarbon oxidation. Journal of Colloid and Interface Science, 2016, 469: 296–309
https://doi.org/10.1016/j.jcis.2016.01.059 pmid: 26897566
56 S Mumtaz, S Wang, S Z Hussain, et al.. Dopamine coated Fe3O4 nanoparticles as enzyme mimics for the sensitive detection of bacteria. Chemical Communications, 2017, 53(91): 12306–12308
https://doi.org/10.1039/C7CC07149C pmid: 29094116
57 Y Liu, D L Purich, C Wu, et al.. Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzyme like properties. Journal of the American Chemical Society, 2015, 137(47): 14952–14958
https://doi.org/10.1021/jacs.5b08533 pmid: 26562739
58 X Wang, J Zhuang, Q Peng, et al.. A general strategy for nanocrystal synthesis. Nature, 2005, 437(7055): 121–124
https://doi.org/10.1038/nature03968 pmid: 16136139
59 H Cai, X An, J Cui, et al.. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Applied Materials & Interfaces, 2013, 5(5): 1722–1731
https://doi.org/10.1021/am302883m pmid: 23388099
60 R P Bagwe, J R Kanicky, B J Palla, et al.. Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Critical Reviews in Therapeutic Drug Carrier Systems, 2001, 18(1): 77–140
pmid: 11326744
61 F Bai, D Wang, Z Huo, et al.. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angewandte Chemie International Edition, 2007, 46(35): 6650–6653
https://doi.org/10.1002/anie.200701355 pmid: 17661295
62 Z L Liu, X Wang, K Yao, et al.. Synthesis of magnetite nanoparticles in W/O microemulsion. Journal of Materials Science, 2004, 39(7): 2633–2636
https://doi.org/10.1023/B:JMSC.0000020046.68106.22
63 L Zhuang, W Zhang, Y Zhao, et al.. Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Scientific Reports, 2015, 5(1): 9320
https://doi.org/10.1038/srep09320 pmid: 25799320
64 T A Lastovina, A P Budnyk, E A Kudryavtsev, et al.. Solvothermal synthesis of Sm3+-doped Fe3O4 nanoparticles. Materials Science and Engineering C, 2017, 80: 110–116
https://doi.org/10.1016/j.msec.2017.05.087 pmid: 28866144
65 L Gao, Y Tang, C Wang, et al.. Highly-efficient amphiphilic magnetic nanocomposites based on a simple sol–gel modification for adsorption of phthalate esters. Journal of Colloid and Interface Science, 2019, 552: 142–152
https://doi.org/10.1016/j.jcis.2019.05.031 pmid: 31121431
66 Y Zeng, R Hao, B Xing, et al.. One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46(22): 3920–3922
https://doi.org/10.1039/c0cc00246a pmid: 20428516
67 E Carenza, V Barceló, A Morancho, et al.. Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomaterialia, 2014, 10(8): 3775–3785
https://doi.org/10.1016/j.actbio.2014.04.010 pmid: 24755438
68 D Shan, S Deng, T Zhao, et al.. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials, 2016, 305: 156–163
https://doi.org/10.1016/j.jhazmat.2015.11.047 pmid: 26685062
69 M Chang, Y J Chang, P Y Chao, et al.. Exosome purification based on PEG-coated Fe3O4 nanoparticles. PLoS One, 2018, 13(6): e0199438
https://doi.org/10.1371/journal.pone.0199438 pmid: 29933408
70 N Shahabadi, M Falsafi, K Mansouri. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 141: 213–222
https://doi.org/10.1016/j.colsurfb.2016.01.054 pmid: 26852105
71 C Achilli, S Grandi, G F Guidetti, et al.. Fe3O4@SiO2 core–shell nanoparticles for biomedical purposes: Adverse effects on blood cells. Biomaterials Science, 2016, 4(10): 1417–1421
https://doi.org/10.1039/C6BM00374E pmid: 27517098
72 Y Wei, G Yin, C Ma, et al.. Synthesis and cellular compatibility of biomineralized Fe3O4 nanoparticles in tumor cells targeting peptides. Colloids and Surfaces B: Biointerfaces, 2013, 107: 180–188
https://doi.org/10.1016/j.colsurfb.2013.01.058 pmid: 23500729
73 G Wang, W Gao, X Zhang, et al.. Au nanocage functionalized with ultra-small Fe3O4 nanoparticles for targeting T1–T2 dual MRI and CT imaging of tumor. Scientific Reports, 2016, 6: 28258
https://doi.org/10.1038/srep28258 pmid: 27312564
74 M Felber, R Alberto. 99mTc radiolabelling of Fe3O4–Au core–shell and Au–Fe3O4 dumbbell-like nanoparticles. Nanoscale, 2015, 7(15): 6653–6660
https://doi.org/10.1039/C5NR00269A pmid: 25797603
75 M Gou, S Li, L Zhang, et al.. Facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery. Chemical Communications, 2016, 52(74): 11068–11071
https://doi.org/10.1039/C6CC05515J pmid: 27561158
76 S Shen, B Ding, S Zhang, et al.. Near-infrared light-responsive nanoparticles with thermosensitive yolk–shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Nanomedicine, 2017, 13(5): 1607–1616
https://doi.org/10.1016/j.nano.2017.02.014 pmid: 28285157
77 S Nayak, L A Lyon. Soft nanotechnology with soft nanoparticles. Angewandte Chemie International Edition, 2005, 44(47): 7686–7708
https://doi.org/10.1002/anie.200501321 pmid: 16283684
78 Z Tang, X Zhao, T Zhao, et al.. Magnetic nanoparticles interaction with humic acid: In the presence of surfactants. Environmental Science & Technology, 2016, 50(16): 8640– 8648
https://doi.org/10.1021/acs.est.6b01749 pmid: 27404337
79 B Dutta, N G Shetake, B K Barick, et al.. pH sensitive surfactant-stabilized Fe3O4 magnetic nanocarriers for dual drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 162: 163–171
https://doi.org/10.1016/j.colsurfb.2017.11.054 pmid: 29190467
80 C Justin, A V Samrot, D P Sruthi, et al.. Preparation, characterization and utilization of core/shell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One, 2018, 13(7): e0200440
https://doi.org/10.1371/journal.pone.0200440 pmid: 30021002
81 H K Can, S Kavlak, S ParviziKhosroshahi, et al.. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs). Artificial Cells Nanomedicine and Biotechnology, 2018, 46(2): 421–431
https://doi.org/10.1080/21691401.2017.1315428 pmid: 28423951
82 M Barrow, A Taylor, J C Carrión, et al.. Co-precipitation of DEAE-dextran coated SPIONs: How synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media & Molecular Imaging, 2016, 11(5): 362–370
https://doi.org/10.1002/cmmi.1700 pmid: 27358113
83 D Wu, L Zhu, Y Li, et al.. Superparamagnetic chitosan nanocomplexes for colorectal tumor-targeted delivery of irinotecan. International Journal of Pharmaceutics, 2020, 584: 119394
https://doi.org/10.1016/j.ijpharm.2020.119394 pmid: 32407940
84 P I P Soares, D Machado, C Laia, et al.. Thermal and magnetic properties of chitosan–iron oxide nanoparticles. Carbohydrate Polymers, 2016, 149: 382–390
https://doi.org/10.1016/j.carbpol.2016.04.123 pmid: 27261762
85 X Zhang, Y Wang, S Yang. Simultaneous removal of Co(II) and 1-naphthol by core–shell structured Fe3O4@cyclodextrin magnetic nanoparticles. Carbohydrate Polymers, 2014, 114: 521–529
https://doi.org/10.1016/j.carbpol.2014.08.072 pmid: 25263922
86 J Xie, J Huang, X Li, et al.. Iron oxide nanoparticle platform for biomedical applications. Current Medicinal Chemistry, 2009, 16(10): 1278–1294
https://doi.org/10.2174/092986709787846604 pmid: 19355885
87 F Wang, X Li, W Li, et al.. Dextran coated Fe3O4 nanoparticles as a near-infrared laser-driven photothermal agent for efficient ablation of cancer cells in vitro and in vivo. Materials Science and Engineering C, 2018, 90: 46–56
https://doi.org/10.1016/j.msec.2018.04.030 pmid: 29853113
88 F Assa, H Jafarizadeh-Malmiri, H Ajamein, et al.. Chitosan magnetic nanoparticles for drug delivery systems. Critical Reviews in Biotechnology, 2017, 37(4): 492–509
https://doi.org/10.1080/07388551.2016.1185389 pmid: 27248312
89 H Xing, S Zhang, W Bu, et al.. Ultrasmall NaGdF4 nanodots for efficient MR angiography and atherosclerotic plaque imaging. Advanced Materials, 2014, 26(23): 3867–3872
https://doi.org/10.1002/adma.201305222 pmid: 24677351
90 A K Gupta, S Wells. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Transactions on Nanobioscience, 2004, 3(1): 66–73
https://doi.org/10.1109/TNB.2003.820277 pmid: 15382647
91 G Yang, W Ma, B Zhang, et al.. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI. Materials Science and Engineering C, 2016, 62: 384–390
https://doi.org/10.1016/j.msec.2016.01.090 pmid: 26952437
92 Y Chen, F Zhang, Q Wang, et al.. The synthesis of LA-Fe3O4@PDA-PEG-DOX for photothermal therapy-chemotherapy. Dalton Transactions, 2018, 47(7): 2435–2443
https://doi.org/10.1039/C7DT04080F pmid: 29379913
93 L Wang, M Wang, B Zhou, et al.. PEGylated reduced-graphene oxide hybridized with Fe3O4 nanoparticles for cancer photothermal-immunotherapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(46): 7406–7414
https://doi.org/10.1039/C9TB00630C pmid: 31710067
94 C Yang, W Guo, L Cui, et al.. pH-responsive magnetic core–shell nanocomposites for drug delivery. Langmuir, 2014, 30(32): 9819–9827
https://doi.org/10.1021/la501833u pmid: 25073728
95 H Wei, N Insin, J Lee, et al.. Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Letters, 2012, 12(1): 22–25
https://doi.org/10.1021/nl202721q pmid: 22185195
96 Y Liu, T Chen, C Wu, et al.. Facile surface functionalization of hydrophobic magnetic nanoparticles. Journal of the American Chemical Society, 2014, 136(36): 12552–12555
https://doi.org/10.1021/ja5060324 pmid: 25140614
97 J J Wang, K F Lei, F Han. Tumor microenvironment: Recent advances in various cancer treatments. European Review for Medical and Pharmacological Sciences, 2018, 22(12): 3855–3864
pmid: 29949179
98 M A Zaimy, N Saffarzadeh, A Mohammadi, et al.. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Therapy, 2017, 24(6): 233–243
https://doi.org/10.1038/cgt.2017.16 pmid: 28574057
99 L Li, F Gao, W Jiang, et al.. Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Delivery, 2016, 23(5): 1726–1733
https://doi.org/10.3109/10717544.2015.1006404 PMID:25715808
100 H Choi, S R Choi, R Zhou, et al.. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Academic Radiology, 2004, 11(9): 996–1004
https://doi.org/10.1016/j.acra.2004.04.018 pmid: 15350580
101 J Yang, Y Luo, Y Xu, et al.. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Applied Materials & Interfaces, 2015, 7(9): 5420–5428
https://doi.org/10.1021/am508983n pmid: 25695661
102 Y Luo, J Yang, Y Yan, et al.. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale, 2015, 7(34): 14538–14546
https://doi.org/10.1039/C5NR04003E pmid: 26260703
103 H Zhang, J Li, Y Hu, et al.. Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. Journal of Ovarian Research, 2016, 9(1): 19
https://doi.org/10.1186/s13048-016-0230-2 pmid: 27025582
104 Y Cui, C Zhang, R Luo, et al.. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2016, 11: 5671–5682
https://doi.org/10.2147/IJN.S115357 pmid: 27895477
105 E Hirata, E Sahai. Tumor microenvironment and differential responses to therapy. Cold Spring Harbor Perspectives in Medicine, 2017, 7(7): a026781
https://doi.org/10.1101/cshperspect.a026781 pmid: 28213438
106 T Wu, Y Dai. Tumor microenvironment and therapeutic response. Cancer Letters, 2017, 387: 61–68
https://doi.org/10.1016/j.canlet.2016.01.043 pmid: 26845449
107 H Li, Y Zhao, Y Jia, et al.. Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application in anticancer therapy. Chemical Communications, 2019, 55(100): 15057–15060
https://doi.org/10.1039/C9CC08294H pmid: 31777882
108 E Li, Y Yang, G Hao, et al.. Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics, 2018, 2(3): 233–242
https://doi.org/10.7150/ntno.25565 pmid: 29868348
109 T Yang, D Niu, J Chen, et al.. Biodegradable organosilica magnetic micelles for magnetically targeted MRI and GSH-triggered tumor chemotherapy. Biomaterials Science, 2019, 7(7): 2951–2960
https://doi.org/10.1039/C9BM00342H pmid: 31099352
110 Z Gao, Y Hou, J Zeng, et al.. Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Advanced Materials, 2017, 29(24): 1701095
https://doi.org/10.1002/adma.201701095 pmid: 28402594
111 J Lu, J Sun, F Li, et al.. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. Journal of the American Chemical Society, 2018, 140(32): 10071–10074
https://doi.org/10.1021/jacs.8b04169 pmid: 30059219
112 T Ma, Y Hou, J Zeng, et al.. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. Journal of the American Chemical Society, 2018, 140(1): 211–218
https://doi.org/10.1021/jacs.7b08900 pmid: 29237264
113 M Qin, Y Peng, M Xu, et al.. Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging. Beilstein Journal of Nanotechnology, 2020, 11: 1000–1009
https://doi.org/10.3762/bjnano.11.84 pmid: 32704462
114 Z Zhou, D Huang, J Bao, et al.. A synergistically enhanced T1–T2 dual-modal contrast agent. Advanced Materials, 2012, 24(46): 6223–6228
https://doi.org/10.1002/adma.201203169 pmid: 22972529
115 C Lu, P Dong, L Pi, et al.. Hydroxyl-PEG-phosphonic acid-stabilized superparamagnetic manganese oxide-doped iron oxide nanoparticles with synergistic effects for dual-mode MR imaging. Langmuir, 2019, 35(29): 9474–9482
https://doi.org/10.1021/acs.langmuir.9b00736 pmid: 31241339
116 S Xu, F Yang, X Zhou, et al.. Uniform PEGylated PLGA microcapsules with embedded Fe3O4 nanoparticles for US/MR dual-modality imaging. ACS Applied Materials & Interfaces, 2015, 7(36): 20460–20468
https://doi.org/10.1021/acsami.5b06594 pmid: 26327472
117 X Cui, D Mathe, N Kovács, et al.. Synthesis, characterization, and application of core–shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) nanoparticle as trimodal (MRI, PET/SPECT, and optical) imaging agents. Bioconjugate Chemistry, 2016, 27(2): 319–328
https://doi.org/10.1021/acs.bioconjchem.5b00338 pmid: 26172432
118 A Sánchez, K Ovejero Paredes, J Ruiz-Cabello, et al.. Hybrid decorated core@shell Janus nanoparticles as a flexible platform for targeted multimodal molecular bioimaging of cancer. ACS Applied Materials & Interfaces, 2018, 10(37): 31032–31043
https://doi.org/10.1021/acsami.8b10452 pmid: 30141615
119 W, Cai M, Guo X Weng, et al.. Modified green synthesis of Fe3O4@SiO2 nanoparticles for pH responsive drug release. Materials Science and Engineering C, 2020, 112: 110900
https://doi.org/10.1016/j.msec.2020.110900
120 T Y Zhang, F Y Li, Q H Xu, et al.. Ferrimagnetic nanochains-based mesenchymal stem cell engineering for highly efficient post-stroke recovery. Advanced Functional Materials, 2019, 29(24): 1900603
https://doi.org/10.1002/adfm.201900603
121 Y M Huh, E S Lee, J H Lee, et al.. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Advanced Materials, 2007, 19(20): 3109–3112
https://doi.org/10.1002/adma.200701952
122 O K Arriortua, M Insausti, L Lezama, et al.. RGD-functionalized Fe3O4 nanoparticles for magnetic hyperthermia. Colloids and Surfaces B: Biointerfaces, 2018, 165: 315–324
https://doi.org/10.1016/j.colsurfb.2018.02.031 pmid: 29501962
123 C Xu, Y Zheng, W Gao, et al.. Magnetic hyperthermia ablation of tumors using injectable Fe3O4/calcium phosphate cement. ACS Applied Materials & Interfaces, 2015, 7(25): 13866–13875
https://doi.org/10.1021/acsami.5b02077 pmid: 26065316
124 L Li, S Fu, C Chen, et al.. Microenvironment-driven bioelimination of magnetoplasmonic nanoassemblies and their multimodal imaging-guided tumor photothermal therapy. ACS Nano, 2016, 10(7): 7094–7105
https://doi.org/10.1021/acsnano.6b03238 pmid: 27309678
125 Y Liu, Z Yang, X Huang, et al.. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano, 2018, 12(8): 8129–8137
https://doi.org/10.1021/acsnano.8b02980 pmid: 30001110
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed