Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (3) : 448-455    https://doi.org/10.1007/s11706-021-0557-5
LETTER
A facile solution approach for fabrication of small-sized MoSe2 with few layers as an efficient hydrogen evolution electrocatalyst
Weizhi WANG1(), Wei LI1, Xinxin WANG1, Junyao WU1, Xuewei GU1, Mengjuan QI1, Enhong SHENG1(), Konglin WU2
1. College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Normal University, Wuhu 241002, China
2. School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
 Download: PDF(928 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Weizhi WANG,Enhong SHENG   
Online First Date: 13 July 2021    Issue Date: 24 September 2021
 Cite this article:   
Weizhi WANG,Wei LI,Xinxin WANG, et al. A facile solution approach for fabrication of small-sized MoSe2 with few layers as an efficient hydrogen evolution electrocatalyst[J]. Front. Mater. Sci., 2021, 15(3): 448-455.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0557-5
https://academic.hep.com.cn/foms/EN/Y2021/V15/I3/448
Fig.1  (a) XRD pattern, (b) EDX spectrum, and (c) XPS spectrum of as-prepared products. (d)(e) High-resolution Mo 3d and Se 3d XPS spectra. (f) Raman spectrum of the products.
Fig.2  (a)(b)(c) FESEM and (d)(e)(f) TEM images of as-prepared small-sized MoSe2 nanosheets.
Fig.3  (a) HRTEM image showing the centre of as-prepared small-sized MoSe2 nanosheets. (b) HRTEM image showing exposed edges of small-sized MoSe2 nanosheets with few layers. Inset: SAED pattern of the products.
Fig.4  (a) Polarization curves for small-sized MoSe2 nanosheets, Pt/C, flower-like MoSe2 and bare GCE in H2SO4 solution (0.5 mol·L−1) at a scan rate of 5 mV·s−1. (b) Tafel plots of small-sized MoSe2 nanosheets, Pt/C, and flower-like MoSe2. Plots of the capacitive current density against the scan rate of (c) small-sized MoSe2 nanosheets and (d) flower-like MoSe2 (insets in (c) and (d) show CV curves of small-sized MoSe2 nanosheets and flower-like MoSe2 in 0.5 mol·L−1 H2SO4 solution with different scan rates, respectively). (e) EIS Nyquist plots of small-sized MoSe2 nanosheets and flower-like MoSe2. (f) Polarization curves of small-sized MoSe2 nanosheets in H2SO4 solution (0.5 mol·L−1) before and after 1000 CV cycles (the inset shows the time dependence of the current density for small-sized MoSe2 nanosheets at a static overpotential of 200 mV for 12 h).
1 J A Turner. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974
https://doi.org/10.1126/science.1103197 pmid: 15310892
2 Y Pan, C Zhang, Y Lin, et al.. Electrocatalyst engineering and structure–activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63(6): 921–948
https://doi.org/10.1007/s40843-019-1242-1
3 I Raj, Y L Duan, D Kigen, et al.. Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction. Frontiers of Materials Science, 2018, 12(3): 239–246
https://doi.org/10.1007/s11706-018-0425-0
4 W Z Wang, Y F Xu, Q Liu, et al.. One-dimensional hierarchical structured MoS2 with an ordered stacking of nanosheets: A facile template-free hydrothermal synthesis strategy and application as an efficient hydrogen evolution electrocatalyst. CrystEngComm, 2017, 19(2): 218–223
https://doi.org/10.1039/C6CE02108E
5 C G Morales-Guio, L A Stern, X Hu. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18): 6555–6569
https://doi.org/10.1039/C3CS60468C pmid: 24626338
6 C Xu, S J Peng, C L Tan, et al.. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(16): 5597–5601
https://doi.org/10.1039/C4TA00458B
7 H Wang, D Kong, P Johanes, et al.. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Letters, 2013, 13(7): 3426–3433
https://doi.org/10.1021/nl401944f pmid: 23799638
8 C Tsai, K Chan, F Abild-Pedersen, et al.. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Physical Chemistry Chemical Physics, 2014, 16(26): 13156–13164
https://doi.org/10.1039/C4CP01237B pmid: 24866567
9 Y Yin, Y Zhang, T Gao, et al.. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Advanced Materials, 2017, 29(28): 1700311
https://doi.org/10.1002/adma.201700311 pmid: 28523734
10 J T Zhang, Y L Chen, M Liu, et al.. 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Research, 2018, 11(9): 4587–4598
https://doi.org/10.1007/s12274-018-2040-x
11 P P Wang, H Sun, Y Ji, et al.. Three-dimensional assembly of single-layered MoS2. Advanced Materials, 2014, 26(6): 964–969
https://doi.org/10.1002/adma.201304120 pmid: 24166656
12 N Masurkar, N K Thangavel, L M R Arava. CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2018, 10(33): 27771–27779
https://doi.org/10.1021/acsami.8b07489 pmid: 30048115
13 M Chhowalla, H S Shin, G Eda, et al.. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275
https://doi.org/10.1038/nchem.1589 pmid: 23511414
14 Y Yang, S T Wang, J C Zhang, et al.. Nanosheet-assembled MoSe2 and S-doped MoSe2−x nanostructures for superior lithium storage properties and hydrogen evolution reactions. Inorganic Chemistry Frontiers, 2015, 2(10): 931–937
https://doi.org/10.1039/C5QI00126A
15 X Tian, Q Gao, H Zhang, et al.. Uniform small-sized MoS2 from novel solution-based microwave-assisted method with exceptional reversible lithium storage properties. Nanoscale, 2018, 10(32): 15222–15228
https://doi.org/10.1039/C8NR02833H pmid: 30062336
16 D Yang, R F Frindt. Powder X-ray diffraction of turbostratically stacked layer systems. Journal of Materials Research, 1996, 11(7): 1733–1738
https://doi.org/10.1557/JMR.1996.0217
17 H Fujimoto. Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon, 2003, 41(8): 1585–1592
https://doi.org/10.1016/S0008-6223(03)00116-7
18 T N Ramesh, R S Jayashree, P V Kamath. Disorder in layered hydroxides: DIFFaX simulation of the X-ray powder diffraction patterns of nickel hydroxide. Clays and Clay Minerals, 2003, 51(5): 570–576
https://doi.org/10.1346/CCMN.2003.0510511
19 Z Q Li, C J Lu, Z P Xia, et al.. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 2007, 45(8): 1686–1695
https://doi.org/10.1016/j.carbon.2007.03.038
20 L Cheng, W Huang, Q Gong, et al.. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2014, 53(30): 7860–7863
https://doi.org/10.1002/anie.201402315 pmid: 24838978
21 Y Tang, Z Zhao, Y Wang, et al.. Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance. ACS Applied Materials & Interfaces, 2016, 8(47): 32324–32332
https://doi.org/10.1021/acsami.6b11230 pmid: 27933849
22 H Liu, B H Liu, H Guo, et al.. N-doped C-encapsulated scale-like yolk–shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy, 2018, 51: 639–648
https://doi.org/10.1016/j.nanoen.2018.07.021
23 S O Grim, L J Matienzo. X-ray photoelectron-spectroscopy of inorganic and organometallic compounds of molybdenum. Inorganic Chemistry, 1975, 14(5): 1014–1018
https://doi.org/10.1021/ic50147a013
24 X Guo, G L Cao, F Ding, et al.. A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(9): 5041–5046
https://doi.org/10.1039/C5TA00087D
25 W A Abdallah, A E Nelson. Characterization of MoSe2(0 0 0 1) and ion-sputtered MoSe2 by XPS. Journal of Materials Science, 2005, 40(9–10): 2679–2681
https://doi.org/10.1007/s10853-005-2104-7
26 X Zhang, X F Qiao, W Shi, et al.. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015, 44(9): 2757–2785
https://doi.org/10.1039/C4CS00282B pmid: 25679474
27 X Lu, M I B Utama, J Lin, et al.. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Letters, 2014, 14(5): 2419–2425
https://doi.org/10.1021/nl5000906 pmid: 24678857
28 J C Shaw, H L Zhou, Y Chen, et al.. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014, 7(4): 511–517
https://doi.org/10.1007/s12274-014-0417-z
29 Q Q Jiang, Y F Lu, Z X Huang, et al.. Facile solvent-thermal synthesis of ultrathin MoSe2 nanosheets for hydrogen evolution and organic dyes adsorption. Applied Surface Science, 2017, 402: 277–285
https://doi.org/10.1016/j.apsusc.2017.01.049
30 C Zhang, X Chen, Z W Peng, et al.. Phosphine-free synthesis and shape evolution of MoSe2 nanoflowers for electrocatalytic hydrogen evolution reactions. CrystEngComm, 2018, 20(18): 2491–2498
https://doi.org/10.1039/C8CE00159F
31 H Tang, H Huang, X S Wang, et al.. Hydrothermal synthesis of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange. Applied Surface Science, 2016, 379: 296–303
https://doi.org/10.1016/j.apsusc.2016.04.086
32 M R Gao, M K Y Chan, Y Sun. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6(1): 7493
https://doi.org/10.1038/ncomms8493 pmid: 26138031
33 U Khan, A O’Neill, M Lotya, et al.. High-concentration solvent exfoliation of graphene. Small, 2010, 6(7): 864–871
https://doi.org/10.1002/smll.200902066 pmid: 20209652
34 L Dong, S Lin, L Yang, et al.. Spontaneous exfoliation and tailoring of MoS2 in mixed solvents. Chemical Communications, 2014, 50(100): 15936–15939
https://doi.org/10.1039/C4CC07238C pmid: 25382250
35 V C Tung, M J Allen, Y Yang, et al.. High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 2009, 4(1): 25–29
https://doi.org/10.1038/nnano.2008.329 pmid: 19119278
36 A Midya, A Ghorai, S Mukherjee, et al.. Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(12): 4534–4543
https://doi.org/10.1039/C5TA09003B
37 J O M Bockris, E C Potter. The mechanism of the cathodic hydrogen evolution reaction. Journal of the Electrochemical Society, 1952, 99(4): 169–186
https://doi.org/10.1149/1.2779692
38 Y Li, H Wang, L Xie, et al.. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299
https://doi.org/10.1021/ja201269b pmid: 21510646
39 H Vrubel, T Moehl, M Grätzel, et al.. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chemical Communications, 2013, 49(79): 8985–8987
https://doi.org/10.1039/c3cc45416a pmid: 23963048
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed