Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (3) : 465-470    https://doi.org/10.1007/s11706-021-0561-9
LETTER
Preparation and properties of covalent organic framework nanoparticles with high drug loading
Jian ZOU1, Xiangling REN2, Longfei TAN2, Zhongbing HUANG1(), Li GOU1, Xianwei MENG2()
1. College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
2. Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(1403 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Zhongbing HUANG,Xianwei MENG   
Online First Date: 27 July 2021    Issue Date: 24 September 2021
 Cite this article:   
Jian ZOU,Xiangling REN,Longfei TAN, et al. Preparation and properties of covalent organic framework nanoparticles with high drug loading[J]. Front. Mater. Sci., 2021, 15(3): 465-470.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0561-9
https://academic.hep.com.cn/foms/EN/Y2021/V15/I3/465
Fig.1  Schematic of the preparation process of COF-LZU1 hollow sphere.
Fig.2  SEM images (inset: TEM images) of (a) SiO2, (b) COF@SiO2, and (c) COF-LZU1 hollow sphere.
Fig.3  (a) XRD pattern of COF-LZU1 NPs. (b) FTIR spectra of COF-LZU1 hollow sphere (black), TFB (blue), and p-PDA (red). (c) Zeta potentials of SiO2, NH2-SiO2, COF hollow sphere, and COF-AP-IL@HA.
Fig.4  TEM images of COF-AP-IL@HA degraded in PBS (pH 5.7) at different time points: (a) 4 h; (b) 6 h; (c) 8 h.
Fig.5  (a) The apatinib UV absorption standard curves. (b) Drug release curves of COF-Ap-IL@HA under neutral and acidic conditions.
Fig.6  (a) Infrared thermal images and (b) temperature change curves of COF-AP-IL@HA with different concentrations under the microwave irradiation. (c) Temperature increases of different concentrations of COF-AP-IL@HA suspensions.
  Fig. S1 Statistics graphs about particle sizes of (a) SiO2, (b) COF@SiO2 and (c) hollow COF-LZU1 spheres.
  Fig. S2(a) Synthesized COF@SiO2 and (b) hollow COF spheres under low concentration of ligand.
  Fig. S3 COF-DOX drug release curves under neutral and acidic conditions.
  Fig. S1 Statistics graphs about particle sizes of (a) SiO2, (b) COF@SiO2 and (c) hollow COF-LZU1 spheres.
  Fig. S2(a) Synthesized COF@SiO2 and (b) hollow COF spheres under low concentration of ligand.
  Fig. S3 COF-DOX drug release curves under neutral and acidic conditions.
1 X Ding, J Guo, X Feng, et al.. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angewandte Chemie International Edition, 2011, 50(6): 1289–1293
https://doi.org/10.1002/anie.201005919 pmid: 21290495
2 X Feng, L Liu, Y Honsho, et al.. High-rate charge-carrier transport in porphyrin covalent organic frameworks: Switching from hole to electron to ambipolar conduction. Angewandte Chemie International Edition, 2012, 51(11): 2618–2622
https://doi.org/10.1002/anie.201106203 pmid: 22290932
3 S Alahakoon, R Smaldone. Azine-linked tetraphenylmethane (TPM) based 3D covalent organic framework (COF) for gas storage applications. Abstracts of Papers of the American Chemical Society, 2016, 252
4 N Huang, X Chen, R Krishna, et al.. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angewandte Chemie International Edition, 2015, 54(10): 2986–2990
https://doi.org/10.1002/anie.201411262 pmid: 25613010
5 S Dalapati, S Jin, J Gao, et al.. An azine-linked covalent organic framework. Journal of the American Chemical Society, 2013, 135(46): 17310–17313
https://doi.org/10.1021/ja4103293 pmid: 24182194
6 Y Peng, L Li, C Zhu, et al.. Intramolecular hydrogen bonding-based topology regulation of two-dimensional covalent organic frameworks. Journal of the American Chemical Society, 2020, 142(30): 13162–13169
https://doi.org/10.1021/jacs.0c05596 pmid: 32627561
7 C R DeBlase, K E Silberstein, T T Truong, et al.. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. Journal of the American Chemical Society, 2013, 135(45): 16821–16824
https://doi.org/10.1021/ja409421d pmid: 24147596
8 C J Doonan, D J Tranchemontagne, T G Glover, et al.. Exceptional ammonia uptake by a covalent organic framework. Nature Chemistry, 2010, 2(3): 235–238
https://doi.org/10.1038/nchem.548 pmid: 21124483
9 S Y Ding, J Gao, Q Wang, et al.. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. Journal of the American Chemical Society, 2011, 133(49): 19816–19822
https://doi.org/10.1021/ja206846p pmid: 22026454
10 C Li, Y Ma, H Liu, et al.. Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese Journal of Catalysis, 2020, 41(8): 1288–1297
https://doi.org/10.1016/S1872-2067(20)63572-0
11 M Wang, M Hu, J Liu, et al.. Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosensors & Bioelectronics, 2019, 132: 8–16
https://doi.org/10.1016/j.bios.2019.02.040 pmid: 30851495
12 T Zhang, N Ma, A Ali, et al.. Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosensors & Bioelectronics, 2018, 119: 176–181
https://doi.org/10.1016/j.bios.2018.08.020 pmid: 30125879
13 H Zhao, Z Jin, H Su, et al.. Targeted synthesis of a 2D ordered porous organic framework for drug release. Chemical Communications, 2011, 47(22): 6389–6391
https://doi.org/10.1039/c1cc00084e pmid: 21552587
14 V S Vyas, M Vishwakarma, I Moudrakovski, et al.. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Advanced Materials, 2016, 28(39): 8749–8754
https://doi.org/10.1002/adma.201603006 pmid: 27545588
15 V S Vyas, M Vishwakarma, I Moudrakovski, et al.. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Advanced Materials, 2016, 28(39): 8749–8754
https://doi.org/10.1002/adma.201603006 pmid: 27545588
16 L Bai, S Z F Phua, W Q Lim, et al.. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chemical Communications, 2016, 52(22): 4128–4131
https://doi.org/10.1039/C6CC00853D pmid: 26877025
17 A P Côté, A I Benin, N W Ockwig, et al.. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
https://doi.org/10.1126/science.1120411 pmid: 16293756
18 H Wei, S Chai, N Hu, et al.. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chemical Communications, 2015, 51(61): 12178–12181
https://doi.org/10.1039/C5CC04680G pmid: 26152822
19 M Zhang, J Chen, S Zhang, et al.. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. Journal of the American Chemical Society, 2020, 142(20): 9169–9174
https://doi.org/10.1021/jacs.0c03941 pmid: 32363870
20 B P Biswal, S Chandra, S Kandambeth, et al.. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. Journal of the American Chemical Society, 2013, 135(14): 5328–5331
https://doi.org/10.1021/ja4017842 pmid: 23521070
21 H Shi, M Niu, L Tan, et al.. A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO2 nanoparticles. Chemical Science, 2015, 6(8): 5016–5026
https://doi.org/10.1039/C5SC00781J pmid: 30155006
22 S Brahmachari, M Ghosh, S Dutta, et al.. Biotinylated amphiphile-single walled carbon nanotube conjugate for target-specific delivery to cancer cells. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(9): 1160–1173
https://doi.org/10.1039/c3tb21334j pmid: 32261352
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed