Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (3) : 471-475    https://doi.org/10.1007/s11706-021-0562-8
LETTER
Deposition of carbon nanotubes onto glass fibers using ultrasound standing waves
Julio Alejandro RODRÍGUEZ-GONZÁLEZ(), Carlos RUBIO-GONZÁLEZ, Alfonso PÉREZ-SÁNCHEZ
Centro de Ingeniería y Desarrollo Industrial, Departamento de Energía, Av. Pie de la Cuesta 702, Col. Desarrollo San Pablo, C.P. 76125, Querétaro, Qro, Mexico
 Download: PDF(4593 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Julio Alejandro RODRÍGUEZ-GONZÁLEZ   
Online First Date: 27 July 2021    Issue Date: 24 September 2021
 Cite this article:   
Julio Alejandro RODRÍGUEZ-GONZÁLEZ,Carlos RUBIO-GONZÁLEZ,Alfonso PÉREZ-SÁNCHEZ. Deposition of carbon nanotubes onto glass fibers using ultrasound standing waves[J]. Front. Mater. Sci., 2021, 15(3): 471-475.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0562-8
https://academic.hep.com.cn/foms/EN/Y2021/V15/I3/471
Fig.1  Diagram of the experimental setup used for ultrasonic deposition of MWCNTs onto glass fibers: (a) Raman spectrum of MWCNTs; (b) experimental steps for ultrasonic deposition technique; (c) images of MWCNTs; (d) schematization of the ultrasound standing wave; (e) optical and SEM images of a glass fiber sample with lines of ultrasonically deposited MWCNTs.
Fig.2  Optical (left) and SEM (central and right) images of a glass fiber fabric sample with 0.25 wt.% MWCNTs after ultrasonic deposition and ethanol evaporation.
Fig.3  Images of ultrasonically deposited MWCNTs onto glass fibers for different CNT contents (0.25, 0.5, 0.75 and 1.0 wt.%): (a) 90° samples; (b) 0° samples.
Fig.4  Electrical resistance results of glass fiber samples with randomly dispersed and ultrasonically deposited CNTs for different MWCNT contents: (a) 90° samples; (b) 0° samples.
1 N Gupta, S M Gupta, S K Sharma. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Letters, 2019, 29(5): 419–447
https://doi.org/10.1007/s42823-019-00068-2
2 S Z Al Sheheri, Z M Al-Amshany, Q A Al Sulami, et al.. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Designed Monomers and Polymers, 2019, 22(1): 8–53
https://doi.org/10.1080/15685551.2019.1565664 pmid: 30833877
3 R Paul, L Dai. Interfacial aspects of carbon composites. Composite Interfaces, 2018, 25(5–7): 539–605
https://doi.org/10.1080/09276440.2018.1439632
4 J A Rodríguez-González, C Rubio-González, J A Soto-Cajiga. Piezoresistive response of spray-coated multiwalled carbon nanotubes/glass fiber/epoxy composites under flexural loading. Fibers and Polymers, 2019, 20(8): 1673–1683
https://doi.org/10.1007/s12221-019-8711-8
5 J A Rodríguez-González, C Rubio-González, J J Ku-Herrera. Influence of seawater ageing on the mechanical and damage self-sensing capability of glass fiber-MWCNT/epoxy laminates subjected to flexural loading by means of the electrical resistance approach. Smart Materials and Structures, 2018, 27(12): 125002
https://doi.org/10.1088/1361-665X/aae963
6 M S Irfan, T Khan, T Hussain, et al.. Carbon coated piezoresistive fiber sensors: From process monitoring to structural health monitoring of composites — A review. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106236
https://doi.org/10.1016/j.compositesa.2020.106236
7 M Loos. Carbon Nanotube Reinforced Composites. Amsterdam: Elsevier, 2015
https://doi.org/10.1016/b978-1-4557-3195-4.00002-3
8 R Rafiee. Carbon Nanotube-Reinforced Polymers: From Nano-scale to Macroscale. Amsterdam: Elsevier, 2018
9 L Gan, F Qiu, Y B Hao, et al.. Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene. Journal of Materials Science, 2016, 51(11): 5185–5195
https://doi.org/10.1007/s10853-016-9820-z
10 G X Li, Y Li, Y D Shi, et al.. Uniform fiber orientation and transcrystallization formed in isotactic polypropylene/short glass fiber composites via a shear-induced orientation extrusion. Polymer Composites, 2018, 39(9): 3168–3177
https://doi.org/10.1002/pc.24324
11 P S Goh, A F Ismail, B C Ng. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Composites Part A: Applied Science and Manufacturing, 2014, 56: 103–126
https://doi.org/10.1016/j.compositesa.2013.10.001
12 C Ma, W Zhang, Y Zhu, et al.. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon, 2008, 46(4): 706–710
https://doi.org/10.1016/j.carbon.2008.01.019
13 C A Martin, J K W Sandler, A H Windle, et al.. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer, 2005, 46(3): 877–886
https://doi.org/10.1016/j.polymer.2004.11.081
14 C Luo, G Liu, M Zhang. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors. Frontiers of Materials Science, 2019, 13(3): 270–276
https://doi.org/10.1007/s11706-019-0468-x
15 E Camponeschi, R Vance, M Al-Haik, et al.. Properties of carbon nanotube–polymer composites aligned in a magnetic field. Carbon, 2007, 45(10): 2037–2046
https://doi.org/10.1016/j.carbon.2007.05.024
16 T Kimura, H Ago, M Tobita, et al.. Polymer composites of carbon nanotubes aligned by a magnetic field. Advanced Materials, 2002, 14(19): 1380–1383
https://doi.org/10.1002/1521-4095(20021002)14:19<1380::AID-ADMA1380>3.0.CO;2-V
17 E Moaseri, M Fotouhi, B Bazubandi, et al.. Two-dimensional reinforcement of epoxy composites: alignment of multi-walled carbon nanotubes in two directions. Advanced Composite Materials, 2020, 29(6): 547–557
https://doi.org/10.1080/09243046.2020.1718361
18 M D Haslam, B Raeymaekers. Aligning carbon nanotubes using bulk acoustic waves to reinforce polymer composites. Composites Part B: Engineering, 2014, 60: 91–97
https://doi.org/10.1016/j.compositesb.2013.12.027
19 J Greenhall, L Homel, B Raeymaekers. Ultrasound directed self-assembly processing of nanocomposite materials with ultra-high carbon nanotube weight fraction. Journal of Composite Materials, 2019, 53(10): 1329–1336
https://doi.org/10.1177/0021998318801452
20 T Kozuka, T Tuziuti, H Mitome, et al.. Acoustic manipulation of micro objects using an ultrasonic standing wave. International Symposium on Micro Machine and Human Science, 1994 (IEEE, New York, 1994): 83–87
[1] FMS-21562-OF-RGja_suppl_1 Video  
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed