Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (3) : 220608    https://doi.org/10.1007/s11706-022-0608-6
RESEARCH ARTICLE
Solgel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell
Ahmed EL-FIQI()
Glass Research Department, National Research Centre, Cairo 12622, Egypt
 Download: PDF(3172 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hollow nanospheres exhibit unique properties and find a wide interest in several potential applications such as drug delivery. Herein, novel hollow bioactive glass nanospheres (HBGn) with large hollow cavity and large mesopores in their outer shells were synthesized by a simple and facile one-pot ultrasound assisted solgel method using PEG as the core soft-template. Interestingly, the produced HBGn exhibited large hollow cavity with ~43 nm in diameter and mesoporous shell of ~37 nm in thickness and 7 nm pore size along with nanosphere size around 117 nm. XPS confirmed the presence of Si and Ca elements at the surface of the HBGn outer shell. Notably, HBGn showed high protein loading capacity (~570 mg of Cyto c per 1 g of HBGn) in addition to controlled protein release over 5 d. HBGn also demonstrated a good in vitro capability of releasing calcium (Ca2+: 170 ppm) and silicate (SiO44−: 78 ppm) ions in an aqueous medium over 2 weeks under physiological-like conditions. Excellent in vitro growth of bone-like hydroxyapatite nanocrystals was exhibited by HBGn during the soaking in SBF. A possible underlying mechanism involving the formation of spherical aggregates (coils) of PEG was proposed for the formation process of HBGn.

Keywords bioactive glass      hollow nanosphere      hollow cavity      mesoporous shell      soft-template ultrasound assisted solgel synthesis      therapeutic protein delivery     
Corresponding Author(s): Ahmed EL-FIQI   
Issue Date: 27 June 2022
 Cite this article:   
Ahmed EL-FIQI. Solgel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell[J]. Front. Mater. Sci., 2022, 16(3): 220608.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0608-6
https://academic.hep.com.cn/foms/EN/Y2022/V16/I3/220608
Fig.1  Synthesis process of HBGn: schematic illustration of a facile one-pot ultrasound-mediated sol?gel synthesis process of hollow bioactive glass nanospheres using PEG as the core soft-template.
Fig.2  Microstructure and particle-size analyses: (a)(b) TEM images at low magnification (TEM-SAED pattern revealed by the inset of panel (a) and FE-SEM image shown by the inset of panel (b)); (c)(d) TEM images at high magnification; (e) the particle-size distribution; (f) the hollow cavity-size distribution.
Fig.3  Structure and chemical composition analyses: (a) XRD pattern, (b) ATR-FTIR spectrum, (c) TEM-EDX spectrum, and (d) wide-scan XPS spectrum. High-resolution deconvoluted XPS spectra of (e) Si 2p, (f) O 1s, and (g) Ca 2p core levels. (h) Surface concentrations (atom%) of Si, O, and Ca elements as determined by semi-quantitative XPS.
Fig.4  (a) The hydrodynamic diameter by DLS and (b) the surface ζ-potential by LDE. (c) N2 adsorption?desorption isotherm, (d) BET-plot, and corresponding NLDFT pore-size distributions in ranges of (e) 2?20 nm and (f) 2?9 nm.
Fig.5  Morphological, compositional and structural analyses on the in vitro bone-like hydroxyapatite formation ability of HBGn: HR-TEM images of HBGn after (a) 1 d, (b) 3 d and (c) 7 d of soaking in SBF along with the corresponding TEM/SAED patterns (insets); TEM/EDX results of HBGn after soaking in SBF for (d) 1 d, (e) 3 d and (f) 7 d; corresponding (g) XRD patterns and (h) ATR-FTIR spectra.
Fig.6  Release profiles of (a) silicate ions (SiO44?) and (b) calcium ions (Ca2+). (c) Loading capacity of Cyto c used as a model protein (insets show photos of Cyto c-loaded HBGn) and (d) the Cyto c release profile. (e) Schematic illustration showing a possible underlying mechanism for the formation process of HBGn.
1 G V, Deodhar M L, Adams B G Trewyn . Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnology Journal, 2017, 12( 1): 1600408
https://doi.org/10.1002/biot.201600408 pmid: 27973750
2 B, Leader Q J, Baca D E Golan . Protein therapeutics: a summary and pharmacological classification. Nature Reviews Drug Discovery, 2008, 7( 1): 21– 39
https://doi.org/10.1038/nrd2399 pmid: 18097458
3 N, Guziewicz A, Best B, Perez-Ramirez , et al.. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 2011, 32( 10): 2642– 2650
https://doi.org/10.1016/j.biomaterials.2010.12.023 pmid: 21216004
4 E, Yasun S, Gandhi S, Choudhury , et al.. Hollow micro and nanostructures for therapeutic and imaging applications. Journal of Drug Delivery Science and Technology, 2020, 60 : 102094
https://doi.org/10.1016/j.jddst.2020.102094 pmid: 34335877
5 A M, Vargason A C, Anselmo S Mitragotri . The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 2021, 5( 9): 951– 967
https://doi.org/10.1038/s41551-021-00698-w pmid: 33795852
6 C, Xu C, Lei C Yu . Mesoporous silica nanoparticles for protein protection and delivery. Frontiers in Chemistry, 2019, 7 : 290
https://doi.org/10.3389/fchem.2019.00290 pmid: 31119124
7 V, Raman Dessel N, Van C L, Hall , et al.. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nature Communications, 2021, 12( 1): 6116
https://doi.org/10.1038/s41467-021-26367-9 pmid: 34675204
8 M, Ray Y W, Lee F, Scaletti , et al.. Intracellular delivery of proteins by nanocarriers. Nanomedicine, 2017, 12( 8): 941– 952
https://doi.org/10.2217/nnm-2016-0393 pmid: 28338410
9 D, Zhao N, Yang L, Xu , et al.. Hollow structures as drug carriers: recognition, response, and release. Nano Research, 2022, 15( 2): 739– 757
https://doi.org/10.1007/s12274-021-3595-5 pmid: 34254012
10 Z, Fu Q, Zhou L, Li , et al.. Preparation of hollow silica nanoparticles using cationic spherical polyelectrolyte brushes as catalytic template. Colloid & Polymer Science, 2020, 298( 7): 879– 886
https://doi.org/10.1007/s00396-020-04627-2
11 J, Sharma G Polizos . Hollow silica particles: recent progress and future perspectives. Nanomaterials, 2020, 10( 8): 1599
https://doi.org/10.3390/nano10081599 pmid: 32823994
12 Y, Zhu M, Zhang S, Wei , et al.. Temperature-responsive P(NIPAM-co-NHMA)-grafted organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. Journal of Drug Delivery Science and Technology, 2022, 70 : 103197
https://doi.org/10.1016/j.jddst.2022.103197
13 B, Li H C Zeng . Architecture and preparation of hollow catalytic devices. Advanced Materials, 2019, 31( 38): 1801104
https://doi.org/10.1002/adma.201801104 pmid: 30160321
14 Y, Bao C, Shi T, Wang , et al.. Recent progress in hollow silica: template synthesis, morphologies and applications. Microporous and Mesoporous Materials, 2016, 227 : 121– 136
https://doi.org/10.1016/j.micromeso.2016.02.040
15 X, Wu M, Wei S, Yu , et al.. Formation of cerium oxide hollow spheres and investigation of hollowing mechanism. SN Applied Sciences, 2019, 1( 2): 170
https://doi.org/10.1007/s42452-019-0178-0
16 Mel A A, El R, Nakamura C Bittencourt . The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein Journal of Nanotechnology, 2015, 6 : 1348– 1361
https://doi.org/10.3762/bjnano.6.139 pmid: 26199838
17 H J, Fan U, Gösele M Zacharias . Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small, 2007, 3( 10): 1660– 1671
https://doi.org/10.1002/smll.200700382 pmid: 17890644
18 S F, Soares T, Fernandes A L, Daniel-da-Silva , et al.. The controlled synthesis of complex hollow nanostructures and prospective applications. Proceedings A: Mathematical, Physical and Engineering Sciences, 2019, 475( 2224): 20180677
https://doi.org/10.1098/rspa.2018.0677 pmid: 31105450
19 N, Mutlu AM, Beltrán Q, Nawaz , et al.. Combination of selective etching and impregnation toward hollow mesoporous bioactive glass nanoparticles. Nanomaterials, 2021, 11( 7): 1846
https://doi.org/10.3390/nano11071846
20 B, Li W, Luo Y, Wang , et al.. Bioactive SiO2–CaO–P2O5 hollow nanospheres for drug delivery. Journal of Non-Crystalline Solids, 2016, 447 : 98– 103
https://doi.org/10.1016/j.jnoncrysol.2016.05.041
21 G S, Pappas P, Bilalis G C Kordas . Synthesis and characterization of SiO2–CaO–P2O5 hollow nanospheres for biomedical applications. Materials Letters, 2012, 67( 1): 273– 276
https://doi.org/10.1016/j.matlet.2011.09.089
22 T, Liu Z, Li X, Ding , et al.. Facile synthesis of hollow bioactive glass nanospheres with tunable size. Materials Letters, 2017, 190 : 99– 102
https://doi.org/10.1016/j.matlet.2016.12.129
23 X, Wang X, Miao Z, Li , et al.. Fabrication of mesoporous silica hollow spheres using triblock copolymer PEG–PPG–PEG as template. Journal of Non-Crystalline Solids, 2010, 356( 18‒19): 898– 905
https://doi.org/10.1016/j.jnoncrysol.2009.12.029
24 S N, Abdollahi M, Naderi G Amoabediny . Synthesis and characterization of hollow gold nanoparticles using silica spheres as templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436 : 1069– 1075
https://doi.org/10.1016/j.colsurfa.2013.08.028
25 Y, Xie D, Kocaefe C, Chen , et al.. Review of research on template methods in preparation of nanomaterials. Journal of Nanomaterials, 2016, 2016 : 2302595
https://doi.org/10.1155/2016/2302595
26 S J, Son X, Bai S B Lee. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications. Drug Discovery Today, 2007, 12( 15–16): 650– 656
27 Z, Mai J, Chen Q, Cao , et al.. Rational design of hollow mesoporous titania nanoparticles loaded with curcumin for UV-controlled release and targeted drug delivery. Nanotechnology, 2021, 32( 20): 205604
https://doi.org/10.1088/1361-6528/abe4fe pmid: 33567415
28 K, Lin Y, Gan P, Zhu , et al.. Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery. Nanotechnology, 2021, 32( 28): 285602
https://doi.org/10.1088/1361-6528/abf4a9 pmid: 33799309
29 J, Xue W, Zheng L, Wang , et al.. Scalable fabrication of polydopamine nanotubes based on curcumin crystals. ACS Biomaterials Science & Engineering, 2016, 2( 4): 489– 493
https://doi.org/10.1021/acsbiomaterials.6b00102 pmid: 33465852
30 Z, Teng W, Li Y, Tang , et al.. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Advanced Materials, 2019, 31( 38): 1707612
https://doi.org/10.1002/adma.201707612 pmid: 30285290
31 C Y, Lin W P, Li S P, Huang , et al.. Hollow mesoporous silica nanosphere-supported FePt nanoparticles for potential theranostic applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5( 36): 7598– 7607
https://doi.org/10.1039/C7TB01812F pmid: 32264235
32 M, Kong J, Tang Q, Qiao , et al.. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics, 2017, 7( 13): 3276– 3292
https://doi.org/10.7150/thno.19987 pmid: 28900509
33 C, Migneco E, Fiume E, Verné , et al.. A guided walk through the world of mesoporous bioactive glasses (MBGs): fundamentals, processing, and applications. Nanomaterials, 2020, 10( 12): 2571
https://doi.org/10.3390/nano10122571 pmid: 33371415
34 M, Kapp C, Li Z, Xu , et al.. Protein adsorption on SiO2‒CaO bioactive glass nanoparticles with controllable Ca content. Nanomaterials, 2021, 11( 3): 561
https://doi.org/10.3390/nano11030561
35 A, El-Fiqi H W Kim . Sol‒gel synthesis and characterization of novel cobalt ions-containing mesoporous bioactive glass nanospheres as hypoxia and ferroptosis-inducing nano-therapeutics. Journal of Non-Crystalline Solids, 2021, 569 : 120999
https://doi.org/10.1016/j.jnoncrysol.2021.120999
36 Q, Hu Y, Li N, Zhao , et al.. Facile synthesis of hollow mesoporous bioactive glass sub-micron spheres with a tunable cavity size. Materials Letters, 2014, 134 : 130– 133
https://doi.org/10.1016/j.matlet.2014.07.041
37 Y, Wang X Chen . Facile synthesis of hollow mesoporous bioactive glasses with tunable shell thickness and good monodispersity by micro-emulsion method. Materials Letters, 2017, 189 : 325– 328
https://doi.org/10.1016/j.matlet.2016.12.004
38 Y, Wang H, Pan X Chen . The preparation of hollow mesoporous bioglass nanoparticles with excellent drug delivery capacity for bone tissue regeneration. Frontiers in Chemistry, 2019, 7 : 283
https://doi.org/10.3389/fchem.2019.00283 pmid: 31106197
39 T, Kokubo H Takadama . How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 2006, 27( 15): 2907– 2915
https://doi.org/10.1016/j.biomaterials.2006.01.017 pmid: 16448693
40 A, El-Fiqi R, Allam H W Kim . Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties. Colloids and Surfaces B: Biointerfaces, 2021, 206 : 111932
https://doi.org/10.1016/j.colsurfb.2021.111932 pmid: 34175740
41 A, El-Fiqi N, Mandakhbayar S B, Jo , et al.. Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. Bioactive Materials, 2021, 6( 1): 123– 136
https://doi.org/10.1016/j.bioactmat.2020.07.010 pmid: 32817919
42 T, Mudalige H, Qu Haute D, Van , et al.. Chapter 11 — Characterization of nanomaterials: tools and challenges. In: López Rubio A, Fabra Rovira M J, Martinez Sans M, et al., eds. Nanomaterials for Food Applications. Amsterdam, Netherlands: Elsevier, 2019, 313– 353
43 A, El-Fiqi J H, Kim H W Kim . Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: physicochemical, mechanical and in vivo evaluations. Materials Science and Engineering C, 2020, 110 : 110660
https://doi.org/10.1016/j.msec.2020.110660 pmid: 32204088
44 A, El-Fiqi J O, Buitrago S H, Yang , et al.. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications. Acta Biomaterialia, 2017, 60 : 38– 49
https://doi.org/10.1016/j.actbio.2017.07.036 pmid: 28754647
45 A, El-Fiqi H W Kim . Nano/micro-structured poly(ε-caprolactone)/gelatin nanofibers with biomimetically-grown hydroxyapatite spherules: high protein adsorption, controlled protein delivery and sustained bioactive ions release designed as a multifunctional bone regenerative membrane. Ceramics International, 2021, 47( 14): 19873– 19885
https://doi.org/10.1016/j.ceramint.2021.04.003
46 F, Soulet Saati T, Al S, Roga , et al.. Fibroblast growth factor-2 interacts with free ribosomal protein S19. Biochemical and Biophysical Research Communications, 2001, 289( 2): 591– 596
https://doi.org/10.1006/bbrc.2001.5960 pmid: 11716516
47 I I, Slowing B G, Trewyn V S Y Lin . Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Journal of the American Chemical Society, 2007, 129( 28): 8845– 8849
https://doi.org/10.1021/ja0719780 pmid: 17589996
48 B, Li Y, Zhao X, Xu , et al.. Fabrication of hollow Sb2O3 microspheres by PEG coil template. Chemistry Letters, 2006, 35( 9): 1026– 1027
https://doi.org/10.1246/cl.2006.1026
49 A, Azri P, Giamarchi Y, Grohens , et al.. Polyethylene glycol aggregates in water formed through hydrophobic helical structures. Journal of Colloid and Interface Science, 2012, 379( 1): 14– 19
https://doi.org/10.1016/j.jcis.2012.04.025 pmid: 22608144
50 J Israelachvili . The different faces of poly(ethylene glycol). Proceedings of the National Academy of Sciences of the United States of America, 1997, 94( 16): 8378– 8379
https://doi.org/10.1073/pnas.94.16.8378 pmid: 11607748
51 Y, Xu X, Jiao D Chen . Peg-assisted preparation of single-crystalline Cu2O hollow nanocubes. The Journal of Physical Chemistry C, 2008, 112( 43): 16769– 16773
https://doi.org/10.1021/jp8058933
52 Y, Xu D, Chen X, Jiao , et al.. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells. The Journal of Physical Chemistry C, 2007, 111( 44): 16284– 16289
https://doi.org/10.1021/jp075358x
53 Y, Cui L, Liu B, Li , et al.. Fabrication of tunable core‒shell structured TiO2 mesoporous microspheres using linear polymer polyethylene glycol as templates. The Journal of Physical Chemistry C, 2010, 114( 6): 2434– 2439
https://doi.org/10.1021/jp908613u
54 X, Zhou S, Chen D, Zhang , et al.. Microsphere organization of nanorods directed by PEG linear polymer. Langmuir, 2006, 22( 4): 1383– 1387
https://doi.org/10.1021/la052105r pmid: 16460048
55 J, Rao A, Yu C, Shao , et al.. Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property. ACS Applied Materials & Interfaces, 2012, 4( 10): 5346– 5352
https://doi.org/10.1021/am3012966 pmid: 22970973
56 N A, Dhas K S Suslick . Sonochemical preparation of hollow nanospheres and hollow nanocrystals. Journal of the American Chemical Society, 2005, 127( 8): 2368– 2369
https://doi.org/10.1021/ja049494g pmid: 15724972
57 J H, Bang K S Suslick . Sonochemical synthesis of nanosized hollow hematite. Journal of the American Chemical Society, 2007, 129( 8): 2242– 2243
https://doi.org/10.1021/ja0676657 pmid: 17269775
58 H, Xu B W, Zeiger K S Suslick . Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 2013, 42( 7): 2555– 2567
https://doi.org/10.1039/C2CS35282F pmid: 23165883
59 M, Zhang J Chang . Surfactant-assisted sonochemical synthesis of hollow calcium silicate hydrate (CSH) microspheres for drug delivery. Ultrasonics Sonochemistry, 2010, 17( 5): 789– 792
https://doi.org/10.1016/j.ultsonch.2010.01.012 pmid: 20207574
[1] FMS-22608-OF-EFa_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed