|
|
Sol‒gel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell |
Ahmed EL-FIQI( ) |
Glass Research Department, National Research Centre, Cairo 12622, Egypt |
|
|
Abstract Hollow nanospheres exhibit unique properties and find a wide interest in several potential applications such as drug delivery. Herein, novel hollow bioactive glass nanospheres (HBGn) with large hollow cavity and large mesopores in their outer shells were synthesized by a simple and facile one-pot ultrasound assisted sol‒gel method using PEG as the core soft-template. Interestingly, the produced HBGn exhibited large hollow cavity with ~43 nm in diameter and mesoporous shell of ~37 nm in thickness and 7 nm pore size along with nanosphere size around 117 nm. XPS confirmed the presence of Si and Ca elements at the surface of the HBGn outer shell. Notably, HBGn showed high protein loading capacity (~570 mg of Cyto c per 1 g of HBGn) in addition to controlled protein release over 5 d. HBGn also demonstrated a good in vitro capability of releasing calcium (Ca2+: 170 ppm) and silicate (SiO44−: 78 ppm) ions in an aqueous medium over 2 weeks under physiological-like conditions. Excellent in vitro growth of bone-like hydroxyapatite nanocrystals was exhibited by HBGn during the soaking in SBF. A possible underlying mechanism involving the formation of spherical aggregates (coils) of PEG was proposed for the formation process of HBGn.
|
Keywords
bioactive glass
hollow nanosphere
hollow cavity
mesoporous shell
soft-template ultrasound assisted sol‒gel synthesis
therapeutic protein delivery
|
Corresponding Author(s):
Ahmed EL-FIQI
|
Issue Date: 27 June 2022
|
|
1 |
G V, Deodhar M L, Adams B G Trewyn . Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnology Journal, 2017, 12( 1): 1600408
https://doi.org/10.1002/biot.201600408
pmid: 27973750
|
2 |
B, Leader Q J, Baca D E Golan . Protein therapeutics: a summary and pharmacological classification. Nature Reviews Drug Discovery, 2008, 7( 1): 21– 39
https://doi.org/10.1038/nrd2399
pmid: 18097458
|
3 |
N, Guziewicz A, Best B, Perez-Ramirez , et al.. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 2011, 32( 10): 2642– 2650
https://doi.org/10.1016/j.biomaterials.2010.12.023
pmid: 21216004
|
4 |
E, Yasun S, Gandhi S, Choudhury , et al.. Hollow micro and nanostructures for therapeutic and imaging applications. Journal of Drug Delivery Science and Technology, 2020, 60 : 102094
https://doi.org/10.1016/j.jddst.2020.102094
pmid: 34335877
|
5 |
A M, Vargason A C, Anselmo S Mitragotri . The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 2021, 5( 9): 951– 967
https://doi.org/10.1038/s41551-021-00698-w
pmid: 33795852
|
6 |
C, Xu C, Lei C Yu . Mesoporous silica nanoparticles for protein protection and delivery. Frontiers in Chemistry, 2019, 7 : 290
https://doi.org/10.3389/fchem.2019.00290
pmid: 31119124
|
7 |
V, Raman Dessel N, Van C L, Hall , et al.. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nature Communications, 2021, 12( 1): 6116
https://doi.org/10.1038/s41467-021-26367-9
pmid: 34675204
|
8 |
M, Ray Y W, Lee F, Scaletti , et al.. Intracellular delivery of proteins by nanocarriers. Nanomedicine, 2017, 12( 8): 941– 952
https://doi.org/10.2217/nnm-2016-0393
pmid: 28338410
|
9 |
D, Zhao N, Yang L, Xu , et al.. Hollow structures as drug carriers: recognition, response, and release. Nano Research, 2022, 15( 2): 739– 757
https://doi.org/10.1007/s12274-021-3595-5
pmid: 34254012
|
10 |
Z, Fu Q, Zhou L, Li , et al.. Preparation of hollow silica nanoparticles using cationic spherical polyelectrolyte brushes as catalytic template. Colloid & Polymer Science, 2020, 298( 7): 879– 886
https://doi.org/10.1007/s00396-020-04627-2
|
11 |
J, Sharma G Polizos . Hollow silica particles: recent progress and future perspectives. Nanomaterials, 2020, 10( 8): 1599
https://doi.org/10.3390/nano10081599
pmid: 32823994
|
12 |
Y, Zhu M, Zhang S, Wei , et al.. Temperature-responsive P(NIPAM-co-NHMA)-grafted organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. Journal of Drug Delivery Science and Technology, 2022, 70 : 103197
https://doi.org/10.1016/j.jddst.2022.103197
|
13 |
B, Li H C Zeng . Architecture and preparation of hollow catalytic devices. Advanced Materials, 2019, 31( 38): 1801104
https://doi.org/10.1002/adma.201801104
pmid: 30160321
|
14 |
Y, Bao C, Shi T, Wang , et al.. Recent progress in hollow silica: template synthesis, morphologies and applications. Microporous and Mesoporous Materials, 2016, 227 : 121– 136
https://doi.org/10.1016/j.micromeso.2016.02.040
|
15 |
X, Wu M, Wei S, Yu , et al.. Formation of cerium oxide hollow spheres and investigation of hollowing mechanism. SN Applied Sciences, 2019, 1( 2): 170
https://doi.org/10.1007/s42452-019-0178-0
|
16 |
Mel A A, El R, Nakamura C Bittencourt . The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein Journal of Nanotechnology, 2015, 6 : 1348– 1361
https://doi.org/10.3762/bjnano.6.139
pmid: 26199838
|
17 |
H J, Fan U, Gösele M Zacharias . Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small, 2007, 3( 10): 1660– 1671
https://doi.org/10.1002/smll.200700382
pmid: 17890644
|
18 |
S F, Soares T, Fernandes A L, Daniel-da-Silva , et al.. The controlled synthesis of complex hollow nanostructures and prospective applications. Proceedings A: Mathematical, Physical and Engineering Sciences, 2019, 475( 2224): 20180677
https://doi.org/10.1098/rspa.2018.0677
pmid: 31105450
|
19 |
N, Mutlu AM, Beltrán Q, Nawaz , et al.. Combination of selective etching and impregnation toward hollow mesoporous bioactive glass nanoparticles. Nanomaterials, 2021, 11( 7): 1846
https://doi.org/10.3390/nano11071846
|
20 |
B, Li W, Luo Y, Wang , et al.. Bioactive SiO2–CaO–P2O5 hollow nanospheres for drug delivery. Journal of Non-Crystalline Solids, 2016, 447 : 98– 103
https://doi.org/10.1016/j.jnoncrysol.2016.05.041
|
21 |
G S, Pappas P, Bilalis G C Kordas . Synthesis and characterization of SiO2–CaO–P2O5 hollow nanospheres for biomedical applications. Materials Letters, 2012, 67( 1): 273– 276
https://doi.org/10.1016/j.matlet.2011.09.089
|
22 |
T, Liu Z, Li X, Ding , et al.. Facile synthesis of hollow bioactive glass nanospheres with tunable size. Materials Letters, 2017, 190 : 99– 102
https://doi.org/10.1016/j.matlet.2016.12.129
|
23 |
X, Wang X, Miao Z, Li , et al.. Fabrication of mesoporous silica hollow spheres using triblock copolymer PEG–PPG–PEG as template. Journal of Non-Crystalline Solids, 2010, 356( 18‒19): 898– 905
https://doi.org/10.1016/j.jnoncrysol.2009.12.029
|
24 |
S N, Abdollahi M, Naderi G Amoabediny . Synthesis and characterization of hollow gold nanoparticles using silica spheres as templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436 : 1069– 1075
https://doi.org/10.1016/j.colsurfa.2013.08.028
|
25 |
Y, Xie D, Kocaefe C, Chen , et al.. Review of research on template methods in preparation of nanomaterials. Journal of Nanomaterials, 2016, 2016 : 2302595
https://doi.org/10.1155/2016/2302595
|
26 |
S J, Son X, Bai S B Lee. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications. Drug Discovery Today, 2007, 12( 15–16): 650– 656
|
27 |
Z, Mai J, Chen Q, Cao , et al.. Rational design of hollow mesoporous titania nanoparticles loaded with curcumin for UV-controlled release and targeted drug delivery. Nanotechnology, 2021, 32( 20): 205604
https://doi.org/10.1088/1361-6528/abe4fe
pmid: 33567415
|
28 |
K, Lin Y, Gan P, Zhu , et al.. Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery. Nanotechnology, 2021, 32( 28): 285602
https://doi.org/10.1088/1361-6528/abf4a9
pmid: 33799309
|
29 |
J, Xue W, Zheng L, Wang , et al.. Scalable fabrication of polydopamine nanotubes based on curcumin crystals. ACS Biomaterials Science & Engineering, 2016, 2( 4): 489– 493
https://doi.org/10.1021/acsbiomaterials.6b00102
pmid: 33465852
|
30 |
Z, Teng W, Li Y, Tang , et al.. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Advanced Materials, 2019, 31( 38): 1707612
https://doi.org/10.1002/adma.201707612
pmid: 30285290
|
31 |
C Y, Lin W P, Li S P, Huang , et al.. Hollow mesoporous silica nanosphere-supported FePt nanoparticles for potential theranostic applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5( 36): 7598– 7607
https://doi.org/10.1039/C7TB01812F
pmid: 32264235
|
32 |
M, Kong J, Tang Q, Qiao , et al.. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics, 2017, 7( 13): 3276– 3292
https://doi.org/10.7150/thno.19987
pmid: 28900509
|
33 |
C, Migneco E, Fiume E, Verné , et al.. A guided walk through the world of mesoporous bioactive glasses (MBGs): fundamentals, processing, and applications. Nanomaterials, 2020, 10( 12): 2571
https://doi.org/10.3390/nano10122571
pmid: 33371415
|
34 |
M, Kapp C, Li Z, Xu , et al.. Protein adsorption on SiO2‒CaO bioactive glass nanoparticles with controllable Ca content. Nanomaterials, 2021, 11( 3): 561
https://doi.org/10.3390/nano11030561
|
35 |
A, El-Fiqi H W Kim . Sol‒gel synthesis and characterization of novel cobalt ions-containing mesoporous bioactive glass nanospheres as hypoxia and ferroptosis-inducing nano-therapeutics. Journal of Non-Crystalline Solids, 2021, 569 : 120999
https://doi.org/10.1016/j.jnoncrysol.2021.120999
|
36 |
Q, Hu Y, Li N, Zhao , et al.. Facile synthesis of hollow mesoporous bioactive glass sub-micron spheres with a tunable cavity size. Materials Letters, 2014, 134 : 130– 133
https://doi.org/10.1016/j.matlet.2014.07.041
|
37 |
Y, Wang X Chen . Facile synthesis of hollow mesoporous bioactive glasses with tunable shell thickness and good monodispersity by micro-emulsion method. Materials Letters, 2017, 189 : 325– 328
https://doi.org/10.1016/j.matlet.2016.12.004
|
38 |
Y, Wang H, Pan X Chen . The preparation of hollow mesoporous bioglass nanoparticles with excellent drug delivery capacity for bone tissue regeneration. Frontiers in Chemistry, 2019, 7 : 283
https://doi.org/10.3389/fchem.2019.00283
pmid: 31106197
|
39 |
T, Kokubo H Takadama . How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 2006, 27( 15): 2907– 2915
https://doi.org/10.1016/j.biomaterials.2006.01.017
pmid: 16448693
|
40 |
A, El-Fiqi R, Allam H W Kim . Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties. Colloids and Surfaces B: Biointerfaces, 2021, 206 : 111932
https://doi.org/10.1016/j.colsurfb.2021.111932
pmid: 34175740
|
41 |
A, El-Fiqi N, Mandakhbayar S B, Jo , et al.. Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. Bioactive Materials, 2021, 6( 1): 123– 136
https://doi.org/10.1016/j.bioactmat.2020.07.010
pmid: 32817919
|
42 |
T, Mudalige H, Qu Haute D, Van , et al.. Chapter 11 — Characterization of nanomaterials: tools and challenges. In: López Rubio A, Fabra Rovira M J, Martinez Sans M, et al., eds. Nanomaterials for Food Applications. Amsterdam, Netherlands: Elsevier, 2019, 313– 353
|
43 |
A, El-Fiqi J H, Kim H W Kim . Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: physicochemical, mechanical and in vivo evaluations. Materials Science and Engineering C, 2020, 110 : 110660
https://doi.org/10.1016/j.msec.2020.110660
pmid: 32204088
|
44 |
A, El-Fiqi J O, Buitrago S H, Yang , et al.. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications. Acta Biomaterialia, 2017, 60 : 38– 49
https://doi.org/10.1016/j.actbio.2017.07.036
pmid: 28754647
|
45 |
A, El-Fiqi H W Kim . Nano/micro-structured poly(ε-caprolactone)/gelatin nanofibers with biomimetically-grown hydroxyapatite spherules: high protein adsorption, controlled protein delivery and sustained bioactive ions release designed as a multifunctional bone regenerative membrane. Ceramics International, 2021, 47( 14): 19873– 19885
https://doi.org/10.1016/j.ceramint.2021.04.003
|
46 |
F, Soulet Saati T, Al S, Roga , et al.. Fibroblast growth factor-2 interacts with free ribosomal protein S19. Biochemical and Biophysical Research Communications, 2001, 289( 2): 591– 596
https://doi.org/10.1006/bbrc.2001.5960
pmid: 11716516
|
47 |
I I, Slowing B G, Trewyn V S Y Lin . Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Journal of the American Chemical Society, 2007, 129( 28): 8845– 8849
https://doi.org/10.1021/ja0719780
pmid: 17589996
|
48 |
B, Li Y, Zhao X, Xu , et al.. Fabrication of hollow Sb2O3 microspheres by PEG coil template. Chemistry Letters, 2006, 35( 9): 1026– 1027
https://doi.org/10.1246/cl.2006.1026
|
49 |
A, Azri P, Giamarchi Y, Grohens , et al.. Polyethylene glycol aggregates in water formed through hydrophobic helical structures. Journal of Colloid and Interface Science, 2012, 379( 1): 14– 19
https://doi.org/10.1016/j.jcis.2012.04.025
pmid: 22608144
|
50 |
J Israelachvili . The different faces of poly(ethylene glycol). Proceedings of the National Academy of Sciences of the United States of America, 1997, 94( 16): 8378– 8379
https://doi.org/10.1073/pnas.94.16.8378
pmid: 11607748
|
51 |
Y, Xu X, Jiao D Chen . Peg-assisted preparation of single-crystalline Cu2O hollow nanocubes. The Journal of Physical Chemistry C, 2008, 112( 43): 16769– 16773
https://doi.org/10.1021/jp8058933
|
52 |
Y, Xu D, Chen X, Jiao , et al.. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells. The Journal of Physical Chemistry C, 2007, 111( 44): 16284– 16289
https://doi.org/10.1021/jp075358x
|
53 |
Y, Cui L, Liu B, Li , et al.. Fabrication of tunable core‒shell structured TiO2 mesoporous microspheres using linear polymer polyethylene glycol as templates. The Journal of Physical Chemistry C, 2010, 114( 6): 2434– 2439
https://doi.org/10.1021/jp908613u
|
54 |
X, Zhou S, Chen D, Zhang , et al.. Microsphere organization of nanorods directed by PEG linear polymer. Langmuir, 2006, 22( 4): 1383– 1387
https://doi.org/10.1021/la052105r
pmid: 16460048
|
55 |
J, Rao A, Yu C, Shao , et al.. Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property. ACS Applied Materials & Interfaces, 2012, 4( 10): 5346– 5352
https://doi.org/10.1021/am3012966
pmid: 22970973
|
56 |
N A, Dhas K S Suslick . Sonochemical preparation of hollow nanospheres and hollow nanocrystals. Journal of the American Chemical Society, 2005, 127( 8): 2368– 2369
https://doi.org/10.1021/ja049494g
pmid: 15724972
|
57 |
J H, Bang K S Suslick . Sonochemical synthesis of nanosized hollow hematite. Journal of the American Chemical Society, 2007, 129( 8): 2242– 2243
https://doi.org/10.1021/ja0676657
pmid: 17269775
|
58 |
H, Xu B W, Zeiger K S Suslick . Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 2013, 42( 7): 2555– 2567
https://doi.org/10.1039/C2CS35282F
pmid: 23165883
|
59 |
M, Zhang J Chang . Surfactant-assisted sonochemical synthesis of hollow calcium silicate hydrate (CSH) microspheres for drug delivery. Ultrasonics Sonochemistry, 2010, 17( 5): 789– 792
https://doi.org/10.1016/j.ultsonch.2010.01.012
pmid: 20207574
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|