Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (3) : 220612    https://doi.org/10.1007/s11706-022-0612-x
RESEARCH ARTICLE
Z-scheme mechanism for methylene blue degradation over Fe2O3/g-C3N4 nanocomposite prepared via one-pot exfoliation and magnetization of g-C3N4
Shemeena MULLAKKATTUTHODI1, Vijayasree HARIDAS1, Sankaran SUGUNAN2, Binitha N. NARAYANAN1,3()
1. Department of Chemistry, Sree Neelakanta Government Sanskrit College (Affiliated to University of Calicut) Pattambi, Palakkad 679306, Kerala, India
2. Department of Applied Chemistry, Cochin University of Science and Technology, Cochin 22, Kerala, India
3. Department of Chemistry, University of Calicut, Malappuram, Kerala 673635, India
 Download: PDF(2957 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The low surface area, high recombination rate of photogenerated charge carriers, narrow visible range activity, and difficulty in the separation from cleaned solutions limit the wide application of g-C3N4 as a photocatalyst. Herein, we have succeeded in developing a one-pot strategy to overcome the above-mentioned difficulties of g-C3N4. The broadening of the visible-light response range and inducing magnetic nature to g-C3N4 was succeeded by preparing a nanocomposite with Fe2O3 via a facile solvothermal method. The preparation method additionally imparted layer exfoliation of g-C3N4 as evident from the XRD patterns and TEM images. The strong interaction between the components is revealed from the XPS analysis. The broadened visible-light absorbance of Fe2O3/g-C3N4 with a Z-scheme photocatalytic degradation mechanism is well evident from the UVVis DRS analysis and PL measurement of the composite with terephthalic acid. The active species of photocatalysis were further investigated using scavenging studies in methylene blue degradation that revealed hydroxyl radicals and holes as the major contributors to the activity of Fe2O3/g-C3N4.

Keywords Fe2O3/g-C3N4 nanocomposite      Z-scheme photocatalysis      magnetic separation      dye degradation     
Corresponding Author(s): Binitha N. NARAYANAN   
Issue Date: 28 July 2022
 Cite this article:   
Shemeena MULLAKKATTUTHODI,Vijayasree HARIDAS,Sankaran SUGUNAN, et al. Z-scheme mechanism for methylene blue degradation over Fe2O3/g-C3N4 nanocomposite prepared via one-pot exfoliation and magnetization of g-C3N4[J]. Front. Mater. Sci., 2022, 16(3): 220612.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0612-x
https://academic.hep.com.cn/foms/EN/Y2022/V16/I3/220612
Fig.1  XRD patterns of bulk g-C3N4, g-C3N4-HT, Fe2O3, and Fe2O3/g-C3N4.
Fig.2  FTIR spectra of g-C3N4-HT (a), Fe2O3/g-C3N4 (b), and Fe2O3 (c).
Fig.3  Raman spectra of (a) Fe2O3, (b) bulk g-C3N4, (c) g-C3N4-HT, and (d) Fe2O3/g-C3N4.
Fig.4  XPS results of the Fe2O3/g-C3N4 nanocomposite: (a) wide-angle survey spectrum; (b) C 1s, (c) N 1s, (d) O 1s, and (e) Fe 2p deconvoluted spectra.
Fig.5  (a) UV?Vis DRS results and (b) Kubelka?Munk plots of Fe2O3, g-C3N4-HT, and Fe2O3/g-C3N4.
Fig.6  Possible band structures of g-C3N4-HT and Fe2O3.
Fig.7  SEM images of (a) Fe2O3/g-C3N4, (b) Fe2O3, and (c) g-C3N4-HT.
Fig.8  (a)(d) TEM, (b)(e) HRTEM, and (c)(f) SAED images of the Fe2O3/g-C3N4 nanocomposite (upper panels) and Fe2O3 (lower panels).
Fig.9  PL spectra of bulk g-C3N4 (a), g-C3N4-HT (b), and Fe2O3/g-C3N4 (c).
Fig.10  EIS results of Fe2O3, g-C3N4-HT, and Fe2O3/g-C3N4.
Fig.11  VSM hysteresis loops of Fe2O3 and Fe2O3/g-C3N4.
Fig.12  Variations of the degradation of MB with (a) the volume of MB solution, (b) the mass of photocatalyst, (c) the concentration of MB solution on the Fe2O3/g-C3N4 nanocomposite, and (d) the pH of MB solution under sunlight.
Fig.13  Comparison of photocatalytic activities of Fe2O3, g-C3N4-HT, and Fe2O3/g-C3N4 (reaction conditions: 0.15 g photocatalyst, 75 mL of the 5 mg·L?1 MB solution, 30 min, and under sunlight).
Fig.14  Scavenging studies in the MB photodegradation using the Fe2O3/g-C3N4 nanocomposite.
Fig.15  PL spectra for the TAOH formation over the Fe2O3/g-C3N4 nanocomposite for 15 min (a), 30 min (b), and 50 min (c).
Fig.16  Representation of the photocatalytic Z-scheme mechanism.
Fig.17  Recyclability studies of the Fe2O3/g-C3N4 nanocomposite (reaction conditions: 0.15 g photocatalyst, 75 mL of the 5 mg·L?1 MB solution, time of 1 h, and under sunlight irradiation).
Fig.18  FTIR results of the Fe2O3/g-C3N4 nanocomposite: fresh before the photodegradation (a); after the photodegradation (b).
Photocatalyst m/mg V(MB)/mL; c(MB)/(mg·L?1) t/min R/% Ref.
5%-LaFeO3/g-C3N4 100 100; 5 120 95 [69]
WO3/g-C3N4-1:1 5 10; 5 160 97.82 [70]
g-C3N4/BiFeO3 (16CN/BFO) 100 200; 5 540 60 [71]
NiO?g-C3N4 50 100; 5 40 100 [72]
ZrO2/g-C3N4 200 200; 5 210 99 [73]
TO-M-2.5 20 50; 5 300 91 [74]
Porous g-C3N4/graphene 300 100; 0.2 51 87 [75]
BCN/ZS-0.25 300 250; 0.12a) 84.3 [76]
Fe2O3 150 75; 5 30 31.1 this work
g-C3N4-HT 150 75; 5 30 88.8 this work
Fe2O3/g-C3N4 nanocomposite 150 75; 5 30 100 this work
Tab.1  Comparison of the MB degradation
1 J, Wen J, Xie X, Chen , et al.. A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391 : 72– 123
https://doi.org/10.1016/j.apsusc.2016.07.030
2 S, Kumar S, Karthikeyan A Lee . g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts, 2018, 8( 2): 74
https://doi.org/10.3390/catal8020074
3 S, Hu L, Ma J, You , et al.. A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst. RSC Advances, 2014, 4( 41): 21657– 21663
https://doi.org/10.1039/C4RA02284J
4 S, Liu H, Zhu W, Yao , et al.. One step synthesis of P-doped g-C3N4 with the enhanced visible light photocatalytic activity. Applied Surface Science, 2018, 430 : 309– 315
https://doi.org/10.1016/j.apsusc.2017.07.108
5 H, Wang Y, Guan S, Hu , et al.. Hydrothermal synthesis of band gap-tunable oxygen-doped g-C3N4 with outstanding “two-channel” photocatalytic H2O2 production ability assisted by dissolution–precipitation process. Nano, 2019, 14( 2): 1950023
https://doi.org/10.1142/S1793292019500231
6 H Sudrajat . A one-pot, solid-state route for realizing highly visible light active Na-doped g-C3N4 photocatalysts. Journal of Solid State Chemistry, 2018, 257 : 26– 33
https://doi.org/10.1016/j.jssc.2017.09.024
7 J X, Sun Y P, Yuan L G, Qiu , et al.. Fabrication of composite photocatalyst g-C3N4‒ZnO and enhancement of photocatalytic activity under visible light. Dalton Transactions, 2012, 41( 22): 6756– 6763
https://doi.org/10.1039/c2dt12474b pmid: 22532247
8 Y, Li F, Li X, Wang , et al.. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2017, 42( 47): 28327– 28336
https://doi.org/10.1016/j.ijhydene.2017.09.137
9 A, Bandyopadhyay D, Ghosh N M, Kaley , et al.. Photocatalytic activity of g-C3N4 quantum dots in visible light: effect of physicochemical modifications. The Journal of Physical Chemistry C, 2017, 121( 3): 1982– 1989
https://doi.org/10.1021/acs.jpcc.6b11520
10 Z, Jin Q, Zhang S, Yuan , et al.. Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Advances, 2015, 5( 6): 4026– 4029
https://doi.org/10.1039/C4RA13355B
11 P, Niu L, Zhang G, Liu , et al.. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 2012, 22( 22): 4763– 4770
https://doi.org/10.1002/adfm.201200922
12 B, Shen Z, Hong Y, Chen , et al.. Template-free synthesis of a novel porous g-C3N4 with 3D hierarchical structure for enhanced photocatalytic H2 evolution. Materials Letters, 2014, 118 : 208– 211
https://doi.org/10.1016/j.matlet.2013.12.070
13 J, Xu L, Zhang R, Shi , et al.. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1( 46): 14766
https://doi.org/10.1039/c3ta13188b
14 Z, Zhao Y, Sun F Dong . Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015, 7( 1): 15– 37
https://doi.org/10.1039/C4NR03008G pmid: 25407808
15 W, Yu D, Xu T Peng . Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 39): 19936– 19947
https://doi.org/10.1039/C5TA05503B
16 J, Wang X, Zuo W, Cai , et al.. Facile fabrication of direct solid-state Z-scheme g-C3N4/Fe2O3 heterojunction: a cost-effective photocatalyst with high efficiency for the degradation of aqueous organic pollutants. Dalton Transactions, 2018, 47( 43): 15382– 15390
https://doi.org/10.1039/C8DT02893A pmid: 30303508
17 J, Yu S, Wang J, Low , et al.. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Physical Chemistry Chemical Physics, 2013, 15( 39): 16883– 16890
https://doi.org/10.1039/c3cp53131g pmid: 23999576
18 L Y, Chen W D Zhang . In2O3/g-C3N4 composite photocatalysts with enhanced visible light driven activity. Applied Surface Science, 2014, 301 : 428– 435
https://doi.org/10.1016/j.apsusc.2014.02.093
19 Q, Qiao K, Yang L L, Ma , et al.. Facile in situ construction of mediator-free direct Z-scheme g-C3N4/CeO2 heterojunctions with highly efficient photocatalytic activity. Journal of Physics D: Applied Physics, 2018, 51( 27): 275302
https://doi.org/10.1088/1361-6463/aac817
20 W K, Jo N C S Selvam . Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chemical Engineering Journal, 2017, 317 : 913– 924
https://doi.org/10.1016/j.cej.2017.02.129
21 J, Wang Z, Guan J, Huang , et al.. Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2( 21): 7960– 7966
https://doi.org/10.1039/C4TA00275J
22 P, Zhou J, Yu M Jaroniec . All-solid-state Z-scheme photocatalytic systems. Advanced Materials, 2014, 26( 29): 4920– 4935
https://doi.org/10.1002/adma.201400288 pmid: 24888530
23 X, She J, Wu H, Xu , et al.. High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Advanced Energy Materials, 2017, 7( 17): 1700025
https://doi.org/10.1002/aenm.201700025
24 D, Xiao K, Dai Y, Qu , et al.. Hydrothermal synthesis of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic reduction of Cr(VI) under visible light. Applied Surface Science, 2015, 358 : 181– 187
https://doi.org/10.1016/j.apsusc.2015.09.042
25 Z, Jiang W, Wan H, Li , et al.. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Advanced Materials, 2018, 30( 10): 1706108
https://doi.org/10.1002/adma.201706108
26 H, Zhang C, Zhu J, Cao , et al.. Ultrasonic-assisted synthesis of 2D α-Fe2O3@g-C3N4 composite with excellent visible light photocatalytic activity. Catalysts, 2018, 8( 10): 457
https://doi.org/10.3390/catal8100457
27 A, Mirzaei Z, Chen F, Haghighat , et al.. Magnetic fluorinated mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: transformation mechanism and toxicity assessment. Applied Catalysis B: Environmental, 2019, 242 : 337– 348
https://doi.org/10.1016/j.apcatb.2018.10.009
28 S, Kumar S, Tonda B, Kumar , et al.. Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. The Journal of Physical Chemistry C, 2013, 117( 49): 26135– 26143
https://doi.org/10.1021/jp409651g
29 Z, Wang Y, Fan R, Wu , et al.. Novel magnetic g-C3N4/α-Fe2O3/Fe3O4 composite for the very effective visible-light-Fenton degradation of Orange II. RSC Advances, 2018, 8( 10): 5180– 5188
https://doi.org/10.1039/C7RA13291C pmid: 35542420
30 H, Ji X, Jing Y, Xu , et al.. Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity. RSC Advances, 2015, 5( 71): 57960– 57967
https://doi.org/10.1039/C5RA07148H
31 Y, Yao Y, Cai F, Lu , et al.. Magnetic ZnFe2O4–C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Industrial & Engineering Chemistry Research, 2014, 53( 44): 17294– 17302
https://doi.org/10.1021/ie503437z
32 K, Vignesh A, Suganthi B K, Min , et al.. Photocatalytic activity of magnetically recoverable MnFe2O4/g-C3N4/TiO2 nanocomposite under simulated solar light irradiation. Journal of Molecular Catalysis A: Chemical, 2014, 395 : 373– 383
https://doi.org/10.1016/j.molcata.2014.08.040
33 Y, Xu S, Huang M, Xie , et al.. Magnetically separable Fe2O3/g-C3N4 catalyst with enhanced photocatalytic activity. RSC Advances, 2015, 5( 116): 95727– 95735
https://doi.org/10.1039/C5RA18009K
34 S, Ye L G, Qiu Y P, Yuan , et al.. Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1( 9): 3008
https://doi.org/10.1039/c2ta01069k
35 S, Babar N, Gavade H, Shinde , et al.. An innovative transformation of waste toner powder into magnetic g-C3N4–Fe2O3 photocatalyst: sustainable e-waste management. Journal of Environmental Chemical Engineering, 2019, 7( 2): 103041
https://doi.org/10.1016/j.jece.2019.103041
36 S, Babar N, Gavade H, Shinde , et al.. Evolution of waste iron rust into magnetically separable g-C3N4–Fe2O3 photocatalyst: an efficient and economical waste management approach. ACS Applied Nano Materials, 2018, 1( 9): 4682– 4694
https://doi.org/10.1021/acsanm.8b00936
37 V, Haridas S, Sugunan B N Narayanan . One-pot low-temperature green synthesis of magnetic graphene nanocomposite for the selective reduction of nitrobenzene. Journal of Solid State Chemistry, 2018, 262 : 287– 293
https://doi.org/10.1016/j.jssc.2018.03.037
38 A, Xie J, Dai X, Chen , et al.. Hierarchical porous carbon materials derived from a waste paper towel with ultrafast and ultrahigh performance for adsorption of tetracycline. RSC Advances, 2016, 6( 77): 72985– 72998
https://doi.org/10.1039/C6RA17286E
39 N S, Arul D, Mangalaraj R, Ramachandran , et al.. Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 29): 15248– 15258
https://doi.org/10.1039/C5TA02630J
40 I M, Sundaram S, Kalimuthu G Ponniah . Highly active ZnO modified g-C3N4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity. Composites Communications, 2017, 5 : 64– 71
https://doi.org/10.1016/j.coco.2017.07.003
41 K, Ishibashi A, Fujishima T, Watanabe , et al.. Quantum yields of active oxidative species formed on TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 134( 1–2): 139– 142
https://doi.org/10.1016/S1010-6030(00)00264-1
42 T, Sano S, Tsutsui K, Koike , et al.. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1( 21): 6489
https://doi.org/10.1039/c3ta10472a
43 P, Qiu H, Chen C, Xu , et al.. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 48): 24237– 24244
https://doi.org/10.1039/C5TA08406G
44 S, Yang Y, Gong J, Zhang , et al.. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Advanced Materials, 2013, 25( 17): 2452– 2456
https://doi.org/10.1002/adma.201204453 pmid: 23450777
45 A, Ruíz-Baltazar R, Esparza G, Rosas , et al.. Effect of the surfactant on the growth and oxidation of iron nanoparticles. Journal of Nanomaterials, 2015, 2015 : 240948
https://doi.org/10.1155/2015/240948
46 S, Sathiyanarayanan S S, Azim G Venkatachari . Preparation of polyaniline–Fe2O3 composite and its anticorrosion performance. Synthetic Metals, 2007, 157( 18–20): 751– 757
https://doi.org/10.1016/j.synthmet.2007.08.004
47 J, Theerthagiri R A, Senthil A, Priya , et al.. Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3–g-C3N4 nanocomposites. RSC Advances, 2014, 4( 72): 38222– 38229
https://doi.org/10.1039/C4RA04266B
48 H, Namduri S Nasrazadani . Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corrosion Science, 2008, 50( 9): 2493– 2497
https://doi.org/10.1016/j.corsci.2008.06.034
49 S, Asuha S, Zhao H Y, Wu , et al.. One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe–urea complex and their properties. Journal of Alloys and Compounds, 2009, 472( 1–2): L23– L25
https://doi.org/10.1016/j.jallcom.2008.05.028
50 S C, Yan Z S, Li Z G Zou . Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 2009, 25( 17): 10397– 10401
https://doi.org/10.1021/la900923z pmid: 19705905
51 P, Jiménez-Calvo C, Marchal T, Cottineau , et al.. Influence of the gas atmosphere during the synthesis of g-C3N4 for enhanced photocatalytic H2 production from water on Au/g-C3N4 composites. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 24): 14849– 14863
https://doi.org/10.1039/C9TA01734H
52 L, Wang Y, Wang X, Li , et al.. 3D/2D Fe2O3/g-C3N4 Z-scheme heterojunction catalysts for fast, effective and stable photo Fenton degradation of azo dyes. Journal of Environmental Chemical Engineering, 2021, 9( 5): 105907
https://doi.org/10.1016/j.jece.2021.105907
53 A, Lassoued B, Dkhil A, Gadri , et al.. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics, 2017, 7 : 3007– 3015
https://doi.org/10.1016/j.rinp.2017.07.066
54 A M, Abdel-Wahab A S, Al-Shirbini O, Mohamed , et al.. Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core‒shell nanostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347 : 186– 198
https://doi.org/10.1016/j.jphotochem.2017.07.030
55 Y, Zhang Q, Pan G, Chai , et al.. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Scientific Reports, 2013, 3( 1): 1943
https://doi.org/10.1038/srep01943 pmid: 23735995
56 S, Tonda S, Kumar S, Kandula , et al.. Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2( 19): 6772
https://doi.org/10.1039/c3ta15358d
57 D Q, Yang E Sacher . Characterization and oxidation of Fe nanoparticles deposited onto highly oriented pyrolytic graphite, using X-ray photoelectron spectroscopy. The Journal of Physical Chemistry C, 2009, 113( 16): 6418– 6425
https://doi.org/10.1021/jp810171e
58 G, Ge X, Guo C, Song , et al.. Reconstructing supramolecular aggregates to nitrogen-deficient g-C3N4 bunchy tubes with enhanced photocatalysis for H2 production. ACS Applied Materials & Interfaces, 2018, 10( 22): 18746– 18753
https://doi.org/10.1021/acsami.8b04227 pmid: 29774739
59 O, Linnik G, Popescu-Pelin N, Stefan , et al.. Investigation of nitrogen and iron co-doped TiO2 films synthesized in N2/CH4 via pulsed laser deposition technique. Applied Nanoscience, 2020, 10( 8): 2569– 2579
https://doi.org/10.1007/s13204-020-01309-x
60 J, Liu T, Zhang Z, Wang , et al.. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry, 2011, 21( 38): 14398
https://doi.org/10.1039/c1jm12620b
61 T, Plecenik M, Gregor R, Sobota , et al.. Surface transport properties of Fe-based superconductors: the influence of degradation and inhomogeneity. Applied Physics Letters, 2013, 103( 5): 052601
https://doi.org/10.1063/1.4816820
62 N A, Zubir C, Yacou J, Motuzas , et al.. Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Scientific Reports, 2014, 4 : 4594
https://doi.org/10.1038/srep04594 pmid: 24699690
63 T, Yamashita P Hayes . Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008, 254( 8): 2441– 2449
https://doi.org/10.1016/j.apsusc.2007.09.063
64 Y, He Y, Wang L, Zhang , et al.. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2015, 168 : 1– 8
https://doi.org/10.1016/j.apcatb.2014.12.017
65 X, Bai S, Yan J, Wang , et al.. A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2( 41): 17521– 17529
https://doi.org/10.1039/C4TA02781G
66 A, Fujishima X Zhang . Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 2006, 9( 5–6): 750– 760
https://doi.org/10.1016/j.crci.2005.02.055
67 X, Fu W, Tang L, Ji , et al.. V2O5/Al2O3 composite photocatalyst: preparation, characterization, and the role of Al2O3. Chemical Engineering Journal, 2012, 180 : 170– 177
https://doi.org/10.1016/j.cej.2011.11.032
68 A, Chachvalvutikul W, Pudkon T, Luangwanta , et al.. Enhanced photocatalytic degradation of methylene blue by a direct Z-scheme Bi2S3/ZnIn2S4 photocatalyst. Materials Research Bulletin, 2019, 111 : 53– 60
https://doi.org/10.1016/j.materresbull.2018.10.034
69 K, Xu J Feng . Superior photocatalytic performance of LaFeO3/g-C3N4 heterojunction nanocomposites under visible light irradiation. RSC Advances, 2017, 7( 72): 45369– 45376
https://doi.org/10.1039/C7RA08715B
70 J, Singh A, Arora S Basu . Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light. Journal of Alloys and Compounds, 2019, 808 : 151734
https://doi.org/10.1016/j.jallcom.2019.151734
71 L, Di H, Yang T, Xian , et al.. Enhanced photocatalytic degradation activity of BiFeO3 microspheres by decoration with g-C3N4 nanoparticles. Materials Research, 2018, 21( 5): 81
https://doi.org/10.1590/1980-5373-mr-2018-0081
72 H Y, Chen L G, Qiu J D, Xiao , et al.. Inorganic–organic hybrid NiO–g-C3N4 photocatalyst for efficient methylene blue degradation using visible light. RSC Advances, 2014, 4( 43): 22491– 22496
https://doi.org/10.1039/C4RA01519C
73 Y, Ke H, Guo D, Wang , et al.. ZrO2/g-C3N4 with enhanced photocatalytic degradation of methylene blue under visible light irradiation. Journal of Materials Research, 2014, 29( 20): 2473– 2482
https://doi.org/10.1557/jmr.2014.276
74 M, Fu J, Liao F, Dong , et al.. Growth of g-C3N4 layer on commercial TiO2 for enhanced visible light photocatalytic activity. Journal of Nanomaterials, 2014, 2014 : 869094
https://doi.org/10.1155/2014/869094
75 Q, Yu S, Guo X, Li , et al.. Template free fabrication of porous g-C3N4/graphene hybrid with enhanced photocatalytic capability under visible light. Materials Technology, 2014, 29( 3): 172– 178
https://doi.org/10.1179/1753555714Y.0000000126
76 W, Tian Q, Shen N, Li , et al.. Efficient degradation of methylene blue over boron-doped g-C3N4/Zn0.8Cd0.2S photocatalysts under simulated solar irradiation. RSC Advances, 2016, 6( 30): 25568– 25576
https://doi.org/10.1039/C6RA01429A
[1] FMS-22612-OF-Ms_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed