Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (4) : 220620    https://doi.org/10.1007/s11706-022-0620-x
RESEARCH ARTICLE
Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature
Yingze BAI1, Xin DONG1,2(), Chuanyu GUO1, Yingming XU1, Bin WANG1(), Xiaoli CHENG1()
1. Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
2. State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(13521 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As an excellent room temperature sensing material, polyaniline (PANI) needs to be further investigated in the field of high sensitivity and sustainable gas sensors due to its long recovery time and difficulty to complete recovery. The ZnO/PANI film with pn heterogeneous energy levels have successfully prepared by spraying ZnO nanorod synthesized by hydrothermal method on the PANI film rapidly synthesized at the gasliquid interface. The presence of pn heterogeneous energy levels enables the ZnO/PANI film to detect 0.1100 ppm (1 ppm = 10−6) NH3 at room temperature with the response value to 100 ppm NH3 doubled (12.96) and the recovery time shortened to 1/5 (31.2 s). The ability of high response and fast recovery makes the ZnO/PANI film to be able to detect NH3 at room temperature continuously. It provides a new idea for PANI to prepare sustainable room temperature sensor and promotes the development of room temperature sensor in public safety.

Keywords rapid recovery      ZnO/polyaniline film      ammonia sensor     
Corresponding Author(s): Xin DONG,Bin WANG,Xiaoli CHENG   
Issue Date: 02 December 2022
 Cite this article:   
Yingze BAI,Xin DONG,Chuanyu GUO, et al. Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature[J]. Front. Mater. Sci., 2022, 16(4): 220620.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0620-x
https://academic.hep.com.cn/foms/EN/Y2022/V16/I4/220620
Fig.1  (a) Schematic diagram of the ZnO/PANI film. (b)(c)(d) SEM images of the PANI film (panel (b)), ZnO (panel (c)) and the PANI film sprayed with 20 mg ZnO (panel (d)). (e) TEM image of the PANI film sprayed 20 mg ZnO (the ZnO/PANI film) (inset: SAED image).
Fig.2  (a) XRD patterns of the PANI film, ZnO, and the ZnO/PANI film. (b) Wide range XPS spectrum and (c)(d)(e)(f) XPS fine spectra of Zn 2p, O 1s, C 1s, and N 1s of the ZnO/PANI film. (g) FTIR spectra of the PANI film, ZnO, and the ZnO/PANI film. (h) Raman spectra of the PANI film and the ZnO/PANI film. (i) Band gap energies of the ZnO/PANI film and ZnO (inset).
Fig.3  (a) The response of the ZnO/PANI film sensor towards 100 ppm of seven gases. (b) The responses of PANI film, ZnO, and the ZnO/PANI film sensor to 100 ppm NH3 at room temperature. (c) The response–recovery curve of PANI film and the ZnO/PANI film sensor to 100 ppm NH3. (d)(f) The response–recovery curve and (e)(g) the linear relationship of the ZnO/PANI film sensor towards 100 ppb–100 ppm NH3. (h) The reproducibility to 100 ppm NH3 and the responses to different RH values of the ZnO/PANI film sensor at room temperature. (i) The response of the ZnO/PANI film sensor to 1 ppm NH3 at room temperature with different RH values.
Fig.4  The contact potential differences of (a) PANI films and (b) ZnO. Schematic diagram of energy band of (c) before and (d) after the composite of PANI films and rod-shaped ZnO.
1 N R, Tanguy M, Thompson N Yan . A review on advances in application of polyaniline for ammonia detection.Sensors and Actuators B: Chemical, 2018, 257: 1044–1064
https://doi.org/10.1016/j.snb.2017.11.008
2 C, Love H, Nazemi E, El-Masri et al.. A review on advanced sensing materials for agricultural gas sensors.Sensors, 2021, 21: 3423
https://doi.org/10.3390/s21103423 pmid: 34069067
3 X, Liu W, Zheng R, Kumar et al.. Conducting polymer-based nanostructures for gas sensors.Coordination Chemistry Reviews, 2022, 462: 214517
https://doi.org/10.1016/j.ccr.2022.214517
4 M A, Farea H Y, Mohammed S M, Shirsat et al.. Hazardous gases sensors based on conducting polymer composites.Chemical Physics Letters, 2021, 776: 138703
https://doi.org/10.1016/j.cplett.2021.138703
5 M, Beygisangchin Rashid S, Abdul S, Shafie et al.. Preparations, properties, and applications of polyaniline and polyaniline thin films — a review.Polymers, 2021, 13(12): 2003
https://doi.org/10.3390/polym13122003 pmid: 34207392
6 J M G, Laranjeira Silva E F Jr, da Azevedo W M, de et al.. AFM studies of polyaniline nanofilms irradiated with gamma rays.Microelectronics Journal, 2003, 34(5–8): 511–513
https://doi.org/10.1016/S0026-2692(03)00099-5
7 V V, Chabukswar S, Pethkar A A Athawale . Acrylic acid doped polyaniline as an ammonia sensor.Sensors and Actuators B: Chemical, 2001, 77(3): 657–663
https://doi.org/10.1016/S0925-4005(01)00780-8
8 T, Zhang H, Qi Z, Liao et al.. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances.Nature Communications, 2019, 10(1): 4225
https://doi.org/10.1038/s41467-019-11921-3 pmid: 31548543
9 A L, Kukla Y M, Shirshov S A Piletsky . Ammonia sensors based on sensitive polyaniline films.Sensors and Actuators B: Chemical, 1996, 37(3): 135–140
https://doi.org/10.1016/S0925-4005(97)80128-1
10 P P, Sengupta S, Barik B Adhikari . Polyaniline as a gas-sensor material.Materials and Manufacturing Processes, 2006, 21(3): 263–270
https://doi.org/10.1080/10426910500464602
11 Y F, Sun S B, Liu F L, Meng et al.. Metal oxide nanostructures and their gas sensing properties: a review.Sensors, 2012, 12(3): 2610–2631
https://doi.org/10.3390/s120302610 pmid: 22736968
12 D L, Zhang J B, Zhang Z, Guo et al.. Optical and electrical properties of zinc oxide thin films with low resistivity via Li–N dual-acceptor doping.Journal of Alloys and Compounds, 2011, 509(20): 5962–5968
https://doi.org/10.1016/j.jallcom.2011.03.028
13 G Murugadoss . Synthesis and characterization of transition metals doped ZnO nanorods.Journal of Materials Science and Technology, 2012, 28(7): 587–593
https://doi.org/10.1016/S1005-0302(12)60102-9
14 J Y, Zhang H B, Feng W C, Hao et al.. Luminescence of nanosized ZnO/polyaniline films prepared by self-assembly.Ceramics International, 2007, 33(5): 785–788
https://doi.org/10.1016/j.ceramint.2006.01.009
15 L C, Ji L, Huang Y, Liu et al.. Optical and electrical properties of zinc oxide/indium/zinc oxide multilayer structures.Thin Solid Films, 2011, 519(11): 3789–3791
https://doi.org/10.1016/j.tsf.2010.12.243
16 Z, Li X, Liu M, Zhou et al.. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine.Journal of Hazardous Materials, 2021, 415: 125757
https://doi.org/10.1016/j.jhazmat.2021.125757 pmid: 34088211
17 V, Kruefu A, Wisitsoraat A, Tuantranont et al.. Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature.Nanoscale Research Letters, 2014, 9(1): 467
https://doi.org/10.1186/1556-276X-9-467 pmid: 25246871
18 M, Das D Sarkar . One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor.Ceramics International, 2017, 43(14): 11123–11131
https://doi.org/10.1016/j.ceramint.2017.05.159
19 V, Gilja I, Živkovic T, Klaser et al.. The impact of in situ polymerization conditions on the structures and properties of PANI/ZnO-based multiphase composite photocatalysts.Catalysts, 2020, 10(4): 400
https://doi.org/10.3390/catal10040400
20 H, Parangusan J, Bhadra Z, Ahmad et al.. Humidity sensor based on poly(lactic acid)/PANI‒ZnO composite electrospun fibers.RSC Advances, 2021, 11(46): 28735–28743
https://doi.org/10.1039/D1RA02842A pmid: 35478584
21 S L, Patil M A, Chougule S, Sen et al.. Measurements on room temperature gas sensing properties of CSA doped polyaniline–ZnO nanocomposites.Measurement, 2012, 45(3): 243–249
https://doi.org/10.1016/j.measurement.2011.12.012
22 R, Gao X L, Cheng S, Gao et al.. Highly selective detection of saturated vapors of abused drugs by ZnO nanorod bundles gas sensor.Applied Surface Science, 2019, 485: 266–273
https://doi.org/10.1016/j.apsusc.2019.04.189
23 C H, Liu H L, Tai P, Zhang et al.. A high-performance flexible gas sensor based on self-assembled PANI–CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature.Sensors and Actuators B: Chemical, 2018, 261: 587–597
https://doi.org/10.1016/j.snb.2017.12.022
24 L, Kumar I, Rawal A, Kaur et al.. Flexible room temperature ammonia sensor based on polyaniline.Sensors and Actuators B: Chemical, 2017, 240: 408–416
https://doi.org/10.1016/j.snb.2016.08.173
25 Y, Li M F, Jiao H J, Zhao et al.. High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties.Sensors and Actuators B: Chemical, 2018, 264: 285–295
https://doi.org/10.1016/j.snb.2018.02.157
26 Z, Wu X, Sun X, Guo et al.. Development of a rGO-BiVO4 heterojunction humidity sensor with boosted performance.ACS Applied Materials & Interfaces, 2021, 13(23): 27188–27199
https://doi.org/10.1021/acsami.1c05753 pmid: 34096254
27 T K, Sarma A Chattopadhyay . Reversible encapsulation of nanometer-size polyaniline and polyaniline‒Au‒nanoparticle composite in starch.Langmuir, 2004, 20(11): 4733–4737
https://doi.org/10.1021/la0495884 pmid: 15969190
28 B K, Sharma A K, Gupta N, Khare et al.. Synthesis and characterization of polyaniline–ZnO composite and its dielectric behavior.Synthetic Metals, 2009, 159(5–6): 391–395
https://doi.org/10.1016/j.synthmet.2008.10.010
29 M, Dhingra L, Kumar S, Shrivastava et al.. Impact of interfacial interactions on optical and ammonia sensing in zinc oxide/polyaniline structures.Bulletin of Materials Science, 2013, 36(4): 647–652
https://doi.org/10.1007/s12034-013-0508-6
30 B, Altun Er I, Karaduman A O, Çağırtekin et al.. Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method.Applied Physics A, 2021, 127(9): 687
https://doi.org/10.1007/s00339-021-04843-9
31 G K, Paul A, Bhaumik A S, Patra et al.. Enhanced photo-electric response of ZnO/polyaniline layer-by-layer self-assembled films.Materials Chemistry and Physics, 2007, 106(2–3): 360–363
https://doi.org/10.1016/j.matchemphys.2007.06.013
32 S, Gayathri P, Jayabal M, Kottaisamy et al.. Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties.Journal of Applied Physics, 2014, 115(17): 173504
https://doi.org/10.1063/1.4874877
33 S, Jain N, Karmakar A, Shah et al.. Development of Ni doped ZnO/polyaniline nanocomposites as high response room temperature NO2 sensor.Materials Science and Engineering B, 2019, 247: 114381
https://doi.org/10.1016/j.mseb.2019.114381
34 J X, Zhang C, Liu G Q Shi . Raman spectroscopic study on the structural changes of polyaniline during heating and cooling processes.Journal of Applied Polymer Science, 2005, 96(3): 732–739
https://doi.org/10.1002/app.21520
35 R, Mažeikienė V, Tomkute Z, Kuodis et al.. Raman spectroelectrochemical study of polyaniline and sulfonated polyaniline in solutions of different pH.Vibrational Spectroscopy, 2007, 44(2): 201–208
https://doi.org/10.1016/j.vibspec.2006.09.005
36 M, Jain S Annapoorni . Raman study of polyaniline nanofibers prepared by interfacial polymerization.Synthetic Metals, 2010, 160(15–16): 1727–1732
https://doi.org/10.1016/j.synthmet.2010.06.008
37 M, Cochet G, Louarn S, Quillard et al.. Theoretical and experimental vibrational study of emeraldine in salt form.Journal of Raman Spectroscopy, 2000, 31(12): 1041–1049
https://doi.org/10.1002/1097-4555(200012)31:12<1041::AID-JRS641>3.0.CO;2-R
38 Z X, Pei L Y, Ding M L, Lu et al.. Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic activity and stability.The Journal of Physical Chemistry C, 2014, 118(18): 9570–9577
https://doi.org/10.1021/jp5020143
39 J M, Wu Y, Chen L, Pan et al.. Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications.Applied Catalysis B: Environmental, 2018, 221: 187–195
https://doi.org/10.1016/j.apcatb.2017.09.031
40 D M, Xu M Y, Guan Q H, Xu et al.. Multilayer films of layered double hydroxide/polyaniline and their ammonia sensing behavior.Journal of Hazardous Materials, 2013, 262: 64–70
https://doi.org/10.1016/j.jhazmat.2013.08.034 pmid: 24012961
41 Q F, Chang K, Zhao X, Chen et al.. Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection.Journal of Materials Science, 2008, 43(17): 5861–5866
https://doi.org/10.1007/s10853-008-2827-3
42 C, Zhu X, Dong C, Guo et al.. Template-free synthesis of a wafer-sized polyaniline nanoscale film with high electrical conductivity for trace ammonia gas sensing.Journal of Materials Chemistry A, 2022, 10(22): 12150–12156
https://doi.org/10.1039/D2TA01825J
43 S G, Pawar M A, Chougule S L, Patil et al.. Room temperature ammonia gas sensor based on polyaniline‒TiO2 nanocomposite.IEEE Sensors Journal, 2011, 11(12): 3417–3423
https://doi.org/10.1109/JSEN.2011.2160392
44 M O, Ansari M M, Khan S A, Ansari et al.. Enhanced thermoelectric performance and ammonia sensing properties of sulfonated polyaniline/graphene thin films.Materials Letters, 2014, 114: 159–162
https://doi.org/10.1016/j.matlet.2013.09.098
45 Z Q, Wu X D, Chen S B, Zhu et al.. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite.Sensors and Actuators B: Chemical, 2013, 178: 485–493
https://doi.org/10.1016/j.snb.2013.01.014
46 C, Wang M, Yang L, Liu et al.. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature.Journal of Colloid and Interface Science, 2020, 560: 312–320
https://doi.org/10.1016/j.jcis.2019.10.076 pmid: 31670226
47 Y C, Deng L, Tang G M, Zeng et al.. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere.Applied Surface Science, 2016, 387: 882–893
https://doi.org/10.1016/j.apsusc.2016.07.026
48 C, Zhu U, Cakmak O, Sheikhnejad et al.. One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature.Nanotechnology, 2019, 30(25): 255502
https://doi.org/10.1088/1361-6528/ab076e pmid: 30769334
49 T M, Perfecto C A, Zito D P Volanti . Effect of NiS nanosheets on the butanone sensing performance of ZnO hollow spheres under humidity conditions.Sensors and Actuators B: Chemical, 2021, 334: 129684
https://doi.org/10.1016/j.snb.2021.129684
50 S, Srivastava S, Kumar V N, Singh et al.. Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing.International Journal of Hydrogen Energy, 2011, 36(10): 6343–6355
https://doi.org/10.1016/j.ijhydene.2011.01.141
51 B H, Liu X Y, Liu Z, Yuan et al.. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature.Sensors and Actuators B: Chemical, 2019, 295: 86–92
https://doi.org/10.1016/j.snb.2019.05.065
52 U V, Patil N S, Ramgir N, Karmakar et al.. Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films.Applied Surface Science, 2015, 339: 69–74
https://doi.org/10.1016/j.apsusc.2015.02.164
53 V, Talwar O, Singh R C Singh . ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor.Sensors and Actuators B: Chemical, 2014, 191: 276–282
https://doi.org/10.1016/j.snb.2013.09.106
[1] FMS-22620-OF-Byz_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed