Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2024, Vol. 18 Issue (1) : 240672    https://doi.org/10.1007/s11706-024-0672-1
Mesoporous molecular sieve confined phase change materials with high absorption, enhanced thermal conductivity, and cooling energy charging/discharging capacity
Qi Zhang(), Chongyang Liu, Xuehong Wu, Xueling Zhang, Jun Song
School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450007, China
 Download: PDF(13379 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The biggest challenge for organic phase change materials (PCMs) used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process. This is crucial for expanding their applications in the more demanding cold storage field. In this study, novel form-stable low-temperature composite PCMs are prepared with mesoporous materials, namely SBA-15 and CMK-3 (which are prepared using the template method), as supporting matrices and dodecane as the PCM. Owing to the combined effects of capillary forces within mesoporous materials and interactions among dodecane molecules, both dodecane/SBA-15 and dodecane/CMK-3 exhibit outstanding shape stability and thermal cycling stability even after 200 heating/cooling cycles. In comparison to those of dodecane/SBA-15, dodecane/CMK-3 exhibits superior cold storage performance and higher thermal conductivity. Specifically, the phase transition temperature of dodecane/CMK-3 is −8.81 °C with a latent heat of 122.4 J·g−1. Additionally, it has a thermal conductivity of 1.21 W·m−1·K−1, which is 9.45 times that of dodecane alone. All these highlight its significant potential for applications in the area of cold energy storage.

Keywords cold energy storage      phase change material      mesoporous molecular sieve      CMK-3      SBA-15      cooling energy charging/discharging capacity     
Corresponding Author(s): Qi Zhang   
Issue Date: 08 April 2024
 Cite this article:   
Qi Zhang,Chongyang Liu,Xuehong Wu, et al. Mesoporous molecular sieve confined phase change materials with high absorption, enhanced thermal conductivity, and cooling energy charging/discharging capacity[J]. Front. Mater. Sci., 2024, 18(1): 240672.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-024-0672-1
https://academic.hep.com.cn/foms/EN/Y2024/V18/I1/240672
Fig.1  Preparation of CMK-3 and the PCM of dodecane/CMK-3.
Fig.2  TEM images of (a)(b) SBA-15 and (c)(d) CMK-3.
Fig.3  FTIR spectra of SBA-15 and CMK-3.
SamplePhysical properties
Surface performanceSurface area/(cm2·g?1)Average pore size/nmPore volume/(cm3·g?1)
SBA-15hydrophilic5605.80.38
CMK-3hydrophobic1164.612.051.45
Tab.1  Physical properties of SBA-15 and CMK-3
Fig.4  Hydrophilic/hydrophobic performances of (a) SBA-15 and (b) CMK-3. (c) N2 adsorption/desorption isotherms and (d) pore size distributions of SBA-15 and CMK-3.
Fig.5  Absorption fraction–time curves of SBA-15 and CMK-3.
Fig.6  SEM images of (a)(b) dodecane/SBA-15 and (c)(d) dodecane/CMK-3.
Fig.7  FTIR spectra of dodecane, SBA-15, CMK-3, dodecane/SBA-15 and dodecane/CMK-3.
Fig.8  The melting and freezing behaviors of dodecane/SBA-15 and dodecane/CMK-3: (a) DSC curves; (b) TGA curves.
Fig.9  SEM images of (a) dodecane/SBA-15 and (b) dodecane/CMK-3. Melting and freezing enthalpy of (c) dodecane/SBA-15 and (d) dodecane/CMK-3 with different heating/cooling cycles. Leakages of dodecane/CMK-3 samples (e) before and (f) after heating/cooling cycles.
Fig.10  Thermal conductivities of dodecane/SBA-15 and dodecane/CMK-3 compared with that of dodecane.
Fig.11  (a) Temperature and (b) cooling thermal charging/discharging behaviors of dodecane/SBA-15 and dodecane/CMK-3 in the cooling and heating process.
Fig.12  Infrared images of dodecane/CMK-3 in (a) cooling and (b) heating processes.
1 Y, Yang S, Liu G, Zhang et al.. Cellulose nanofiber encapsulated polyethylene glycol phase change composites containing AIE-gen for monitoring leak process.Composites Part A: Applied Science and Manufacturing, 2023, 167: 107452
https://doi.org/10.1016/j.compositesa.2023.107452
2 H, Selvnes Y, Allouche R I, Manescu et al.. Review on cold thermal energy storage applied to refrigeration systems using phase change materials.Thermal Science and Engineering Progress, 2021, 22: 100807
https://doi.org/10.1016/j.tsep.2020.100807
3 K, Yu Y, Liu Y Yang . Review on form-stable inorganic hydrated salt phase change materials: preparation, characterization and effect on the thermophysical properties.Applied Energy, 2021, 292: 116845
https://doi.org/10.1016/j.apenergy.2021.116845
4 X, Li X, Sheng Y, Fang et al.. Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process.Advanced Functional Materials, 2023, 33(18): 2212776
https://doi.org/10.1002/adfm.202212776
5 S, Liu B, Quan M, Sheng et al.. A novel in-situ growth ZIF-67 on biological porous carbon encapsulated phase change composites with electromagnetic interference shielding and multifunctional energy conversion.Nano Energy, 2023, 114: 108669
https://doi.org/10.1016/j.nanoen.2023.108669
6 K, Karthikeyan V, Mariappan R, Anish et al.. Experimental study on the charging and discharging behaviour of capric–lauric acid/oleic acid mixture in a cold thermal energy storage system for cold storage applications.Materials Today: Proceedings, 2021, 46(Part 19): 10022–10029
https://doi.org/10.1016/j.matpr.2021.05.436
7 Y, Li X, Zhang J M, Munyalo et al.. Preparation and thermophysical properties of low temperature composite phase change material octanoic–lauric acid/expanded graphite.Journal of Molecular Liquids, 2019, 277: 577–583
https://doi.org/10.1016/j.molliq.2018.12.111
8 B, Quan M, Wang X, Hu et al.. Large-scale fabrication of flexible EVA/EG@PW phase change composites with high thermal conductivity for thermal management.Macromolecular Materials and Engineering, 2023, 308(9): 2300036
https://doi.org/10.1002/mame.202300036
9 X, Hu X, Huang B, Quan et al.. Tree-inspired and scalable high thermal conductivity ethylene–vinyl acetate copolymer/expanded graphite/paraffin wax phase change composites for efficient thermal management.Chemical Engineering Journal, 2023, 471: 144720
https://doi.org/10.1016/j.cej.2023.144720
10 J, Peng C, Deng F, Wei et al.. A hybrid thermal management system combining liquid cooling and phase change material for downhole electronics.Journal of Energy Storage, 2023, 72: 108610
https://doi.org/10.1016/j.est.2023.108610
11 J, Peng W, Lan F, Wei et al.. A numerical model coupling multiple heat transfer modes to develop a passive thermal management system for logging tool.Applied Thermal Engineering, 2023, 223: 120011
https://doi.org/10.1016/j.applthermaleng.2023.120011
12 L, Zhao M, Li Q, Yu et al.. Improving the thermal performance of novel low-temperature phase change materials through the configuration of 1-dodecanol-tetradecane nanofluids/expanded graphite composites.Journal of Molecular Liquids, 2021, 322: 114948
https://doi.org/10.1016/j.molliq.2020.114948
13 L, Zhao Q, Yu M, Li et al.. Preparation and thermal properties of low-temperature composite phase-change materials based on a binary eutectic mixture with expanded graphite: effect of particle size and mass fraction.Journal of Energy Storage, 2021, 40: 102778
https://doi.org/10.1016/j.est.2021.102778
14 B, Nie A, Palacios B, Zou et al.. Review on phase change materials for cold thermal energy storage applications.Renewable & Sustainable Energy Reviews, 2020, 134: 110340
https://doi.org/10.1016/j.rser.2020.110340
15 Y, Konuklu F, Erzi̇n H B, Akar et al.. Cellulose-based myristic acid composites for thermal energy storage applications.Solar Energy Materials and Solar Cells, 2019, 193: 85–91
https://doi.org/10.1016/j.solmat.2019.01.006
16 X, Zhang Q, Shi L, Luo et al.. Research progress on the phase change materials for cold thermal energy storage.Energies, 2021, 14(24): 8233
https://doi.org/10.3390/en14248233
17 G, Hameed M A, Ghafoor M, Yousaf et al.. Low temperature phase change materials for thermal energy storage: current status and computational perspectives.Sustainable Energy Technologies and Assessments, 2022, 50: 101808
https://doi.org/10.1016/j.seta.2021.101808
18 M, Jafaripour S M, Sadrameli S A H S, Mousavi et al.. Experimental investigation for the thermal management of a coaxial electrical cable system using a form-stable low temperature phase change material.Journal of Energy Storage, 2021, 44(B): 103450
https://doi.org/10.1016/j.est.2021.103450
19 Z, Shen S, Kwon H L, Lae et al.. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage.International Journal of Biological Macromolecules, 2022, 222(B): 3001–3013
https://doi.org/10.1016/j.ijbiomac.2022.10.075
20 Q, Zhang H, Wang Z, Ling et al.. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability.Solar Energy Materials and Solar Cells, 2015, 140: 158–166
https://doi.org/10.1016/j.solmat.2015.04.008
21 W Q, Li S J, Guo L, Tan et al.. Heat transfer enhancement of nano-encapsulated phase change material (NEPCM) using metal foam for thermal energy storage.International Journal of Heat and Mass Transfer, 2021, 166: 120737
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120737
22 S, Zhao J, Li Y, Wu et al.. Porous titanium dioxide foams: a promising carrier material for medium- and high-temperature thermal energy storage.Energy & Fuels, 2020, 34(7): 8884–8890
https://doi.org/10.1021/acs.energyfuels.0c00378
23 Y, Bian K, Wang J, Wang et al.. Preparation and properties of capric acid: stearic acid/hydrophobic expanded perlite-aerogel composite phase change materials.Renewable Energy, 2021, 179: 1027–1035
https://doi.org/10.1016/j.renene.2021.07.125
24 Y, Luan M, Yang Q, Ma et al.. Introduction of an organic acid phase changing material into metal–organic frameworks and the study of its thermal properties.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(20): 7641–7649
https://doi.org/10.1039/C6TA01676F
25 J, Tang M, Yang F, Yu et al.. 1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage.Applied Energy, 2017, 187: 514–522
https://doi.org/10.1016/j.apenergy.2016.11.043
26 M, Musiał L, Lichołai D Katunský . Modern thermal energy storage systems dedicated to autonomous buildings.Energies, 2023, 16(11): 4442
https://doi.org/10.3390/en16114442
27 D, Feng Y, Feng L, Qiu et al.. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation.Renewable & Sustainable Energy Reviews, 2019, 109: 578–605
https://doi.org/10.1016/j.rser.2019.04.041
28 E, Pérez-Mayoral I, Matos M, Bernardo et al.. New and advanced porous carbon materials in fine chemical synthesis.Emerging precursors of porous carbons. Catalysts, 2019, 9(2): 133
https://doi.org/10.3390/catal9020133
29 B, Notario J, Pinto M A Rodriguez-Perez . Nanoporous polymeric materials: a new class of materials with enhanced properties.Progress in Materials Science, 2016, 78–79: 93–139
https://doi.org/10.1016/j.pmatsci.2016.02.002
30 H, Li C, Hu Y, He et al.. Emerging surface strategies for porous materials-based phase change composites.Matter, 2022, 5(10): 3225–3259
https://doi.org/10.1016/j.matt.2022.07.013
31 X K, Yu Y B Tao . Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity.International Journal of Heat and Mass Transfer, 2022, 198: 123433
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123433
32 D, Feng P, Li Y, Feng et al.. Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity.Microporous and Mesoporous Materials, 2021, 310: 110631
https://doi.org/10.1016/j.micromeso.2020.110631
33 X, Li X, Sheng Y, Guo et al.. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities.Journal of Materials Science & Technology, 2021, 86: 171–179
https://doi.org/10.1016/j.jmst.2021.02.009
34 L, Han G, Ma S, Xie et al.. Preparation and characterization of the shape-stabilized phase change material based on sebacic acid and mesoporous MCM-41.Journal of Thermal Analysis and Calorimetry, 2017, 130(2): 935–941
https://doi.org/10.1007/s10973-017-6449-3
35 Y, Zhang Y, Xu R, Lu et al.. Form-stable cold storage phase change materials with durable cold insulation for cold chain logistics of food.Postharvest Biology and Technology, 2023, 203: 112409
https://doi.org/10.1016/j.postharvbio.2023.112409
36 L, Liu X, Zhang X, Xu et al.. Development of low-temperature eutectic phase change material with expanded graphite for vaccine cold chain logistics.Renewable Energy, 2021, 179: 2348–2358
https://doi.org/10.1016/j.renene.2021.07.096
37 T, Kadoono M Ogura . Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3.Physical Chemistry Chemical Physics, 2014, 16(12): 5495–5498
https://doi.org/10.1039/C3CP55429E
38 A H, Lu W, Schmidt A, Taguchi et al.. Taking nanocasting one step further: replicating CMK-3 as a silica material.Angewandte Chemie International Edition, 2002, 41(18): 3489–3492
https://doi.org/10.1002/1521-3773(20020916)41:18<3489::AID-ANIE3489>3.0.CO;2-M
39 G, Shivudu S, Khan K, Chandraraj et al.. Immobilization of recombinant endo-1,4-β-xylanase on ordered mesoporous matrices for xylooligosaccharides production.ChemistrySelect, 2019, 4(38): 11214–11221
https://doi.org/10.1002/slct.201901593
40 J, He K, Ma J, Jin et al.. Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption.Microporous and Mesoporous Materials, 2009, 121(1–3): 173–177
https://doi.org/10.1016/j.micromeso.2009.01.028
41 A, Vinu K Z, Hossain Kumar G, Satish et al.. Adsorption of l-histidine over mesoporous carbon molecular sieves.Carbon, 2006, 44(3): 530–536
https://doi.org/10.1016/j.carbon.2005.08.004
42 L, Zhou X, Liu J, Li et al.. Synthesis of ordered mesoporous carbon molecular sieve and its adsorption capacity for H2, N2, O2, CH4 and CO2.Chemical Physics Letters, 2005, 413(1–3): 6–9
https://doi.org/10.1016/j.cplett.2005.07.048
43 Ziarani G, Mohammadi A, Badiei S, Mousavi et al.. Application of amino-functionalized SBA-15 type mesoporous silica in one-pot synthesis of spirooxindoles.Chinese Journal of Catalysis, 2012, 33(11–12): 1832–1839
https://doi.org/10.1016/S1872-2067(11)60456-7
44 A, Shahbazi H, Younesi A Badiei . Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column.Chemical Engineering Journal, 2011, 168(2): 505–518
https://doi.org/10.1016/j.cej.2010.11.053
45 H, Gaspar M, Andrade C, Pereira et al.. Alkene epoxidation by manganese(III) complexes immobilized onto nanostructured carbon CMK-3.Catalysis Today, 2013, 203: 103–110
https://doi.org/10.1016/j.cattod.2012.04.018
46 L, Pu R, Liu H, Huang et al.. Experimental study of cyclic frosting and defrosting on microchannel heat exchangers with different coatings.Energy and Buildings, 2020, 226: 110382
https://doi.org/10.1016/j.enbuild.2020.110382
47 K S, Yang W, Lu Y L Wu . Visualization of patterned modified surfaces in condensation and frosting states.Energies, 2019, 12(23): 4471
https://doi.org/10.3390/en12234471
48 X, Li Y, Ma Y, Zuo et al.. The efficient enrichment of marine peptides from the protein hydrolysate of the marine worm Urechis unicinctus by using mesoporous materials MCM-41, SBA-15 and CMK-3.Analytical Methods, 2021, 13(21): 2405–2414
https://doi.org/10.1039/D1AY00616A
49 Y, Liu Z, Li X, Yang et al.. Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: adsorption capacity, rate and regenerability.RSC Advances, 2016, 6(25): 21193–21203
https://doi.org/10.1039/C5RA27289K
50 Q, Wang Z, Wang T, Zheng et al.. Size control of SBA-15 by tuning the stirring speed for the formation of CMK-3 with distinct adsorption performance.Nano Research, 2016, 9(8): 2294–2302
https://doi.org/10.1007/s12274-016-1116-8
51 Y, Chen C, Liu Y, Situ et al.. Enhancing thermal conductivity and photo-driven thermal energy charging/discharging rate of annealed CMK-3 based phase change material.Nanomaterials, 2019, 9(3): 364
https://doi.org/10.3390/nano9030364
52 Y, Song N, Zhang Y, Jing et al.. Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage.Energy, 2019, 189: 116175
https://doi.org/10.1016/j.energy.2019.116175
53 K, Zhu H, Qi S, Wang et al.. Preparation and characterization of melamine-formaldehyde resin micro- and nanocapsules filled with n-dodecane.Journal of Macromolecular Science Part B: Physics, 2012, 51(10): 1976–1990
https://doi.org/10.1080/00222348.2012.661663
54 G, Hekimoğlu A, Sarı O, Gencel et al.. Thermal energy storage characteristics of polyacrylic acid/dodecanol/carbon nanofiber composites as thermal conductive shape-stabilized composite phase change materials.International Journal of Energy Research, 2022, 46(14): 20873–20885
https://doi.org/10.1002/er.7732
55 X X, Zhang Y F, Fan X M, Tao et al.. Crystallization and prevention of supercooling of microencapsulated n-alkanes.Journal of Colloid and Interface Science, 2005, 281(2): 299–306
https://doi.org/10.1016/j.jcis.2004.08.046
56 Z, Qian H, Shen X, Fang et al.. Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability.Energy and Buildings, 2018, 158: 1184–1188
https://doi.org/10.1016/j.enbuild.2017.11.033
57 X, Pan N, Zhang Y, Yuan et al.. Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage.Solar Energy, 2021, 230: 269–277
https://doi.org/10.1016/j.solener.2021.10.046
[1] Fenglan CHEN, Xin LIU, Zhengya WANG, Shengnian TIE, Chang-An WANG. Hierarchically porous CMC/rGO/CNFs aerogels for leakage-proof mirabilite phase change materials with superior energy thermal storage[J]. Front. Mater. Sci., 2022, 16(4): 220619-.
[2] MIAO Chunyan, L? Gang, YAO Youwei, TANG Guoyi, WENG Duan. Preparation of shape-stabilized phase change materials as temperature-adjusting powder[J]. Front. Mater. Sci., 2007, 1(3): 284-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed