Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2024, Vol. 18 Issue (1) : 240674    https://doi.org/10.1007/s11706-024-0674-z
A high-performance electrochromic device assembled with WO3/Ag and TiO2/NiO composite electrodes towards smart window
Haorui Liu1,2, Jikai Yang1,2(), Decai Nie1,2, Chunlei Liu1,2, Liumenghan Zheng1,2, Yining Mu1,2, Weijun Chen2
1. Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400000, China
2. School of Physics, Changchun University of Science and Technology, Changchun 130022, China
 Download: PDF(9026 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows. In this research, WO3/Ag and TiO2/NiO composite thin films were separately prepared by the hydrothermal method combined with electrodeposition. The electrochromic properties of the single WO3 thin film were optimized, and TiO2/NiO composite films showed better electrochromic performance than that of the single NiO film. WO3/Ag and TiO2/NiO composite films with excellent electrochromic properties were respectively chosen as the cathode and the anode to construct a WO3/Ag‒TiO2/NiO electrochromic device. The response time (tc = 4.08 s, tb = 1.08 s), optical modulation range (35.91%), and coloration efficiency (30.37 cm2·C−1) of this electrochromic device are better than those of WO3‒NiO and WO3/Ag‒NiO electrochromic devices. This work provides a novel research idea for the performance enhancement of electrochromic smart windows.

Keywords WO3/Ag composite film      TiO2/NiO composite film      electrochromic device     
Corresponding Author(s): Jikai Yang   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 22 April 2024
 Cite this article:   
Haorui Liu,Jikai Yang,Decai Nie, et al. A high-performance electrochromic device assembled with WO3/Ag and TiO2/NiO composite electrodes towards smart window[J]. Front. Mater. Sci., 2024, 18(1): 240674.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-024-0674-z
https://academic.hep.com.cn/foms/EN/Y2024/V18/I1/240674
  Scheme1 The overview flow chat of the design for ECD-3.
Fig.1  (a) XRD patterns of the WO3 thin film and the WO3/Ag-5 s composite thin film. (b) SEM image of the WO3 thin film. (c) SEM image of the WO3/Ag-3 s composite thin film. (d) SEM image of the WO3/Ag-5 s composite thin film. (e) SEM image of the WO3/Ag-7 s composite film. (f) EDS pattern of WO3/Ag-composite films.
Fig.2  (a) XPS survey spectra for WO3/Ag films. (b) High-resolution XPS spectra of Ag 3d for WO3/Ag films.
Fig.3  Comparison of electrochromic properties of WO3 and WO3/Ag thin films: (a) CV curves; (b) CC curves; (c) transmittance variation curves at 630 nm; (d) spectral transmittance curves in colored and bleached states.
Sample(Qi/Qdi)/mCη/%(tc/tb)/s(Tb/Tc)/%?T/%?ODCE/(cm2·C?1)
WO337.87/36.4996.3619.74/8.3362.58/40.5822.000.1914.16
WO3/Ag-3 s64.33/62.1996.6719.25/4.3456.38/19.2737.110.4720.66
WO3/Ag-5 s68.98/66.6996.6814.75/2.7951.14/10.6940.450.6827.68
WO3/Ag-7 s62.11/59.9396.4918.38/4.3135.53/10.4025.130.5324.48
Tab.1  Parameters related to electrochromic performances of WO3 and WO3/Ag composite films at 630 nm
Fig.4  Nyquist plots of WO3 and WO3/Ag thin films.
Fig.5  (a) XRD patterns of the TiO2(3 h) film and the TiO2(3 h)/NiO composite film. (b) XPS survey spectrum for the TiO2(3 h)/NiO film. (c) High-resolution XPS spectrum of Ni2+ 2p for the TiO2(3 h)/NiO film.
Fig.6  SEM images of TiO2 thin films and TiO2/NiO composite thin films: (a) TiO2(2 h); (b) TiO2(3 h); (c) TiO2(4 h); (d) TiO2(2 h)/NiO; (e) TiO2(3 h)/NiO; (f) TiO2(4 h)/NiO.
Sample(Qi/Qdi)/mCη/%(tc/tb)/s(Tb/Tc)/%?T/%?ODCE/(cm2·C?1)
NiO16.82/15.5792.579.68/6.9491.73/73.9217.810.0915.88
TiO2(2 h)/NiO17.63/16.7194.787.41/4.2887.00/64.7222.280.1320.77
TiO2(3 h)/NiO21.22/20.0894.635.76/3.9682.61/56.8225.790.1621.83
TiO2(4 h)/NiO22.44/21.0193.637.56/5.5577.85/53.0424.810.1721.16
Tab.2  Parameters related to electrochromic performances of NiO and TiO2/NiO composite films at 630 nm
Fig.7  Comparison of electrochromic properties for NiO and TiO2/NiO films: (a) CV curves; (b) CC curves; (c) transmittance variation curves at 630 nm; (d) spectral transmittance curves in colored and bleached states.
Fig.8  Nyquist plots of the NiO film and TiO2/NiO composite films.
Sample(Qi/Qdi)/mCη/%(tc/tb)/s(Tb/Tc)/%?T/%?ODCE/(cm2·C?1)
ECD-122.60/21.2293.896.41/2.9860.91/36.5424.370.2218.85
ECD-231.16/29.4094.354.35/2.6750.15/27.5122.640.2616.07
ECD-337.85/35.9194.874.08/1.0848.00/12.0935.910.6030.37
Tab.3  Parameters related to electrochromic performances of ECD-1, ECD-2, and ECD-3 at 630 nm
Fig.9  Comparison of electrochromic properties for ECD-1, ECD-2, and ECD-3: (a) CV curves; (b) CC curves; (c) transmittance variation curves at 630 nm; (d) spectral transmittance curves in colored and bleached states; (e) digital photograph of ECD-3.
Sample(Qi/Qdi)/mCη/%(tc/tb)/s(Tb/Tc)/%?T/%?ODCE/(cm2·C?1)
ECD-122.60/21.2293.893.18/4.2571.65/17.8753.780.6051.25
ECD-231.16/29.4094.352.98/3.5362.08/7.8854.200.9055.24
ECD-337.85/35.9194.872.55/2.5157.99/1.5956.401.5679.23
Tab.4  Parameters related to electrochromic performances of ECD-1, ECD-2, and ECD-3 at 890 nm
1 W, Fan C, Chen H, Bai et al.. Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting.Applied Catalysis B: Environmental, 2016, 195: 9–15
https://doi.org/10.1016/j.apcatb.2016.05.003
2 Y C, Choi S I Seok . Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution.Advanced Functional Materials, 2015, 25(19): 2892–2898
https://doi.org/10.1002/adfm.201500296
3 D, Dong W, Wang A, Rougier et al.. Lithium trapping as a degradation mechanism of the electrochromic properties of all-solid-state WO3/NiO devices.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(37): 9875–9889
https://doi.org/10.1039/C8TC01372A
4 H, Li L, McRae C J, Firby et al.. Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows.Nano Energy, 2018, 47: 130–139
https://doi.org/10.1016/j.nanoen.2018.02.043
5 P A, Shinde V C, Lokhande M A, Patil et al.. Single-step hydrothermal synthesis of WO3–MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor.International Journal of Hydrogen Energy, 2018, 43(5): 2869–2880
https://doi.org/10.1016/j.ijhydene.2017.12.093
6 G Y, Karaca E, Eren G C, Cogal et al.. Enhanced electrochromic characteristics induced by Au/PEDOT/Pt microtubes in WO3 based electrochromic devices.Optical Materials, 2019, 88: 472–478
https://doi.org/10.1016/j.optmat.2018.11.052
7 Y, Pang Q, Chen X, Shen et al.. Size-controlled Ag nanoparticle modified WO3 composite films for adjustment of electrochromic properties.Thin Solid Films, 2010, 518(8): 1920–1924
https://doi.org/10.1016/j.tsf.2009.07.138
8 R R, Kharade S S, Mali S T, Patil et al.. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films.Electrochimica Acta, 2013, 102: 358–368
https://doi.org/10.1016/j.electacta.2013.03.123
9 Z, Miao X, Yang J, Yang et al.. Preparation and electrochromic properties of WO3/Ag composite film.Acta Photonica Sinica, 2019, 48(10): 1031001
https://doi.org/10.3788/gzxb20194810.1031001
10 H, Moulki D H, Park B, Min et al.. Improved electrochromic performances of NiO based thin films by lithium addition: from single layers to devices.Electrochimica Acta, 2012, 74: 46–52
https://doi.org/10.1016/j.electacta.2012.03.123
11 D, Dong W, Wang A, Barnabé et al.. Enhanced electrochromism in short wavelengths for NiO:(Li, Mg) films in full inorganic device ITO/NiO:(Li, Mg)/Ta2O5/WO3/ITO.Electrochimica Acta, 2018, 263: 277–285
https://doi.org/10.1016/j.electacta.2018.01.049
12 J, Pan R, Zheng Y, Wang et al.. A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window.Solar Energy Materials and Solar Cells, 2020, 207: 110337
https://doi.org/10.1016/j.solmat.2019.110337
13 G, Cai J, Tu D, Zhou et al.. Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application.The Journal of Physical Chemistry C, 2014, 118(13): 6690–6696
https://doi.org/10.1021/jp500699u
14 X, Qi G, Su G, Bo et al.. Synthesis of NiO and NiO/TiO2 films with electrochromic and photocatalytic activities.Surface and Coatings Technology, 2015, 272: 79–85
https://doi.org/10.1016/j.surfcoat.2015.04.020
15 J Q, Kang J K, Yang F Y, Yang et al.. Preparation and electrochromic properties of TiO2/MoO3 composite film.Acta Photonica Sinica, 2018, 47(3): 1004–4213
https://doi.org/10.3788/gzxb20184703.0316003
16 T A, Nguyen T L A, Luu D T, Do et al.. Photocatalytic, electrochemical, and electrochromic properties of in situ Ag-decorated WO3 nanocuboids synthesized via facile hydrothermal method.Applied Physics A: Materials Science & Processing, 2022, 128(12): 1047
https://doi.org/10.1007/s00339-022-06182-9
17 R, Ponnusamy A, Gangan B, Chakraborty et al.. Tuning the pure monoclinic phase of WO3 and WO3–Ag nanostructures for non-enzymatic glucose sensing application with theoretical insight from electronic structure simulations.Journal of Applied Physics, 2018, 123(2): 024701
https://doi.org/10.1063/1.5010826
18 M, Zhang X, Xu Y, Gu et al.. Porous and nanowire-structured NiO/AgNWs composite electrodes for significantly-enhanced supercapacitive and electrochromic performances.Nanotechnology, 2021, 32(27): 275405
https://doi.org/10.1088/1361-6528/abf270
19 W D, Zhang L C, Jiang J S Ye . Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes.The Journal of Physical Chemistry C, 2009, 113(36): 16247–16253
https://doi.org/10.1021/jp905500n
20 L Aamir . Novel p-type Ag–WO3 nano-composite for low-cost electronics, photocatalysis, and sensing: synthesis, characterization, and application.Journal of Alloys and Compounds, 2021, 864: 158108
https://doi.org/10.1016/j.jallcom.2020.158108
21 M C, Biesinger B P, Payne A P, Grosvenor et al.. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni.Applied Surface Science, 2011, 257(7): 2717–2730
https://doi.org/10.1016/j.apsusc.2010.10.051
22 C C, Huang F H, Wang C C, Wu et al.. Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films.Nanoscale Research Letters, 2013, 8(1): 206
https://doi.org/10.1186/1556-276X-8-206
23 G, Sun B, Xiao J W, Shi et al.. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core–shell p–n heterojunction for significantly enhanced photocatalytic H2 evolution.Journal of Colloid and Interface Science, 2021, 596: 215–224
https://doi.org/10.1016/j.jcis.2021.03.150
24 G, Bo X, Wang X, Wang et al.. Preparation and electrochromic performance of NiO/TiO2 nanorod composite film.Journal of Alloys and Compounds, 2017, 728: 878–886
https://doi.org/10.1016/j.jallcom.2017.08.247
25 J, Yang S, Li C, Liu et al.. High-performance electro-optical dual-control color-changing device based on WO3/Cu and TiO2/NiO/CdS composite electrodes.Electrochimica Acta, 2023, 462: 142792
https://doi.org/10.1016/j.electacta.2023.142792
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed