Assuming that the main variables in the life processes at the molecular level are the conformation of biological macromolecules and their frontier electrons a formalism of quantum theory on conformation-electron system is proposed. Based on the quantum theory of conformation-electron system, the protein folding is regarded as a quantum transition between torsion states on polypeptide chain, and the folding rate is calculated by nonadiabatic operator method. The rate calculation is generalized to the case of frequency variation in folding. An analytical form of protein folding rate formula is obtained, which can be served as a useful tool for further studying protein folding. The application of the rate theory to explain the protein folding experiments is briefly summarized. It includes the inertial moment dependence of folding rate, the unified description of two-state and multistate protein folding, the relationship of folding and unfolding rates versus denaturant concentration, the distinction between exergonic and endergonic foldings, the ultrafast and the downhill folding viewed from quantum folding theory, and, finally, the temperature dependence of folding rate and the interpretation of its non-Arrhenius behaviors. All these studies support the view that the protein folding is essentially a quantum transition between conformational states.
. Protein folding as a quantum transition between conformational states[J]. Frontiers of Physics, 2011, 6(1): 133-140.
Liao-fu LUO (罗辽复). Protein folding as a quantum transition between conformational states. Front. Phys. , 2011, 6(1): 133-140.
J. Jortner, J. Chem. Phys. , 1976, 64: 4860 doi: 10.1063/1.432142
7
M. Abramowitz and I. A. Stegun, Handbook of Mathemat-ical Functions, 10th printing with corrections, National Bureau of Standards, Applied Mathematics Series55, 1972
8
G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed., Series: Cambridge Mathematical Library, 1995
Y. Zhang and L. F. Luo, Scientia Sinica Vitae , 2010, 40: 887, doi: 10.1360/052010-337
15
K. W Plaxco, T. Simons, and D. Baker, J. Mol. Biol., 1998, 277(4): 985 doi: 10.1006/jmbi.1998.1645
16
D. N. Ivankov and A. V. Finkelstein, Proc. Natl. Acad. Sci. USA , 2004, 101: 8942 doi: 10.1073/pnas.0402659101
17
K. Kamagata, M. Arai, and K. Kuwajima, J. Mol. Biol. , 2004, 339: 951 doi: 10.1016/j.jmb.2004.04.015
18
K. L. Maxwell, D. Wildes, A. Zarrine-Afsar, M. A. De Los Rios, A. G. Brown, C. T. Friel, L. Hedberg, J. C. Horng, D. Bona, E. J. Miller, A. Vallée-Bélisle, E. R. Main, F. BemporadL. Qiu, K. Teilum, N. D. Vu, A. M. Edwards, I. Ruczinski, F. M. Poulsen, B. B. Kragelund, S. W. Michnick, F. Chiti, Y. Bai, S. J. Hagen, L. Serrano, M. Oliveberg, D. P. Raleigh, P. Wittung-Stafshede, S. E. Radford, S. E. Jackson, T. R. Sosnick, S. Marqusee, A. R. Davidson, and K. W. Plaxco, Protein Sci. , 2005, 14(3): 602 doi: 10.1110/ps.041205405
19
M. Jacob, T. Schindler, J. Balbach, and F. X. Schmid, Proc. Natl. Acad. Sci. USA , 1997, 94 (11): 5622 doi: 10.1073/pnas.94.11.5622
20
L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, J. Am. Chem. Soc. , 2002, 124(44): 12952 doi: 10.1021/ja0279141
21
Y. Zhu, D. O. V. Alonso, K. Maki, C. Y. Huang, S. J. Lahr, V. Daggett, H. Roder, W. F. DeGrado, and F. Gai, Proc. Natl. Acad. Sci. USA , 2003, 100: 15486 doi: 10.1073/pnas.2136623100
22
H. Neuweiler, C. M. Johnson, and A. R. Fersht, Proc. Natl. Acad. Sci. USA , 2009, 106(44): 18569 doi: 10.1073/pnas.0910860106
23
M. M. Garcia-Mira, M. Sadqi, N. Fischer, J. M. Sanchez-Ruiz, and V. Munoz, Science , 2002, 298: 2191 doi: 10.1126/science.1077809
24
M. L. Scalley and D. Baker, Proc. Natl. Acad. Sci. USA , 1997, 94: 10636 doi: 10.1073/pnas.94.20.10636
25
W. Y. Yang and M. Gruebele, Biochemistry , 2004, 43: 13018 doi: 10.1021/bi049113b
26
K. Ghosh, B. Ozkan, and K. A. Dill, J. Am. Chem. Soc. , 2007, 129: 11920 doi: 10.1021/ja066785b