Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (1): 133-140   https://doi.org/10.1007/s11467-010-0153-0
  RESEARCH ARTICLE 本期目录
Protein folding as a quantum transition between conformational states
Protein folding as a quantum transition between conformational states
Liao-fu LUO (罗辽复,)
Laboratory of Theoretical Biophysics, Faculty of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
 全文: PDF(231 KB)   HTML
Abstract

Assuming that the main variables in the life processes at the molecular level are the conformation of biological macromolecules and their frontier electrons a formalism of quantum theory on conformation-electron system is proposed. Based on the quantum theory of conformation-electron system, the protein folding is regarded as a quantum transition between torsion states on polypeptide chain, and the folding rate is calculated by nonadiabatic operator method. The rate calculation is generalized to the case of frequency variation in folding. An analytical form of protein folding rate formula is obtained, which can be served as a useful tool for further studying protein folding. The application of the rate theory to explain the protein folding experiments is briefly summarized. It includes the inertial moment dependence of folding rate, the unified description of two-state and multistate protein folding, the relationship of folding and unfolding rates versus denaturant concentration, the distinction between exergonic and endergonic foldings, the ultrafast and the downhill folding viewed from quantum folding theory, and, finally, the temperature dependence of folding rate and the interpretation of its non-Arrhenius behaviors. All these studies support the view that the protein folding is essentially a quantum transition between conformational states.

Key wordsprotein folding rate    quantum transition    torsion states    non-Arrhenius temperature dependence    exergonic and endergonic folding    ultrafast folding
收稿日期: 2010-09-15      出版日期: 2011-03-05
Corresponding Author(s): null,Email:lolfcm@mail.imu.edu.cn   
 引用本文:   
. Protein folding as a quantum transition between conformational states[J]. Frontiers of Physics, 2011, 6(1): 133-140.
Liao-fu LUO (罗辽复). Protein folding as a quantum transition between conformational states. Front. Phys. , 2011, 6(1): 133-140.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-010-0153-0
https://academic.hep.com.cn/fop/CN/Y2011/V6/I1/133
1 L. F. Luo, Int. J. Quant. Chem. , 1987, 32: 435
doi: 10.1002/qua.560320404
2 D. Shepelyansky, Symposium Anderson Localization in Nonlinear and Many-Body Systems, Dresden, 2009
3 J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins , 1995, 21: 167
doi: 10.1002/prot.340210302
4 K. Huang and A. Rhys, Proc. Roy. Soc. (London) , 1950, A204: 406
5 D. Devault, Quart. Rev., Biophysics , 1980, 13: 387
doi: 10.1017/S003358350000175X
6 J. Jortner, J. Chem. Phys. , 1976, 64: 4860
doi: 10.1063/1.432142
7 M. Abramowitz and I. A. Stegun, Handbook of Mathemat-ical Functions, 10th printing with corrections, National Bureau of Standards, Applied Mathematics Series55, 1972
8 G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed., Series: Cambridge Mathematical Library, 1995
9 L. F. Luo, Int. J. Quant. Chem. , 1995, 54: 243
doi: 10.1002/qua.560540407
10 L. F. Luo, Theoretic-Physical Approach to Molecular Biology, Shanghai: Shanghai Scientific & Technical Publishers, 2004: 437, 457
11 L. F. Luo, arXiv: qbio/0906.2452 , 2009
12 L. F. Luo, arXiv: qbio/1008.0237 , 2010
13 T. Kakitani and H. Kakitani, Biochim. et Biophys. Acta , 1981, 635: 498
doi: 10.1016/0005-2728(81)90109-2
14 Y. Zhang and L. F. Luo, Scientia Sinica Vitae , 2010, 40: 887,
doi: 10.1360/052010-337
15 K. W Plaxco, T. Simons, and D. Baker, J. Mol. Biol., 1998, 277(4): 985
doi: 10.1006/jmbi.1998.1645
16 D. N. Ivankov and A. V. Finkelstein, Proc. Natl. Acad. Sci. USA , 2004, 101: 8942
doi: 10.1073/pnas.0402659101
17 K. Kamagata, M. Arai, and K. Kuwajima, J. Mol. Biol. , 2004, 339: 951
doi: 10.1016/j.jmb.2004.04.015
18 K. L. Maxwell, D. Wildes, A. Zarrine-Afsar, M. A. De Los Rios, A. G. Brown, C. T. Friel, L. Hedberg, J. C. Horng, D. Bona, E. J. Miller, A. Vallée-Bélisle, E. R. Main, F. BemporadL. Qiu, K. Teilum, N. D. Vu, A. M. Edwards, I. Ruczinski, F. M. Poulsen, B. B. Kragelund, S. W. Michnick, F. Chiti, Y. Bai, S. J. Hagen, L. Serrano, M. Oliveberg, D. P. Raleigh, P. Wittung-Stafshede, S. E. Radford, S. E. Jackson, T. R. Sosnick, S. Marqusee, A. R. Davidson, and K. W. Plaxco, Protein Sci. , 2005, 14(3): 602
doi: 10.1110/ps.041205405
19 M. Jacob, T. Schindler, J. Balbach, and F. X. Schmid, Proc. Natl. Acad. Sci. USA , 1997, 94 (11): 5622
doi: 10.1073/pnas.94.11.5622
20 L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, J. Am. Chem. Soc. , 2002, 124(44): 12952
doi: 10.1021/ja0279141
21 Y. Zhu, D. O. V. Alonso, K. Maki, C. Y. Huang, S. J. Lahr, V. Daggett, H. Roder, W. F. DeGrado, and F. Gai, Proc. Natl. Acad. Sci. USA , 2003, 100: 15486
doi: 10.1073/pnas.2136623100
22 H. Neuweiler, C. M. Johnson, and A. R. Fersht, Proc. Natl. Acad. Sci. USA , 2009, 106(44): 18569
doi: 10.1073/pnas.0910860106
23 M. M. Garcia-Mira, M. Sadqi, N. Fischer, J. M. Sanchez-Ruiz, and V. Munoz, Science , 2002, 298: 2191
doi: 10.1126/science.1077809
24 M. L. Scalley and D. Baker, Proc. Natl. Acad. Sci. USA , 1997, 94: 10636
doi: 10.1073/pnas.94.20.10636
25 W. Y. Yang and M. Gruebele, Biochemistry , 2004, 43: 13018
doi: 10.1021/bi049113b
26 K. Ghosh, B. Ozkan, and K. A. Dill, J. Am. Chem. Soc. , 2007, 129: 11920
doi: 10.1021/ja066785b
27 D. Baker, Nature , 2000, 405: 39
doi: 10.1038/35011000
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed