Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (1): 13601   https://doi.org/10.1007/s11467-018-0845-4
  本期目录
Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material
Ye Chen1, Dongyang Wang1, Yuling Zhou2, Qiantao Pang3, Jianwei Shao4, Guangtao Wang5, Jinfeng Wang5, Li-Dong Zhao1()
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2. AVIC SAC Commercial Aircraft Co. Ltd., Shenyang 110034, China
3. Liaoning Tieling Sales Branch, Petro China Co. Ltd., Tieling 112000, China
4. Shenyang Liming Areo-Engine Co. Ltd., Shenyang 110043, China
5. College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
 全文: PDF(12552 KB)  
Abstract

Recently, bismuth sulfide (Bi2S3) has attracted much attention in the thermoelectric community owing to its abundance, low cost, and advanced properties. However, its poor electrical transport properties have prevented Bi2S3 devices from realizing high thermoelectric performance. In this work, our motivation is to decrease the large electrical resistivity, which is recognized as the origin of the low ZT value in undoped Bi2S3. We combined melting and spark plasma sintering (SPS) in a continuous fabrication process to produce Bi2S3–xSex (x = 0, 0.09, 0.15, 0.21) and Bi2S2.85–ySe0.15Cly (y = 0.0015, 0.0045, 0.0075, 0.015, 0.03) samples. Our results show that Se alloying at S sites can narrow the band gap and activate intrinsic electron conduction, leading to a high power factor of ~2.0 μW·cm–1·K–2 at room temperature in Bi2S2.85S0.15, about 100 times higher than that of undoped Bi2S3. Moreover, our further introduction of Cl atoms into the S sites resulted in a second-stage optimization of carrier concentration and simultaneously reduced the lattice thermal conductivity, which contributed to a high ZT value of ~0.6 at 723 K for Bi2S2.835Se0.15Cl0.015. Our results indicate that high thermoelectric performance could be realized in Bi2S3 with earth-abundant and low-cost elements.

Key wordsthermoelectric    Bi2S3    carrier concentration    lattice thermal conductivity
收稿日期: 2018-07-08      出版日期: 2019-01-01
Corresponding Author(s): Li-Dong Zhao   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13601.
Ye Chen, Dongyang Wang, Yuling Zhou, Qiantao Pang, Jianwei Shao, Guangtao Wang, Jinfeng Wang, Li-Dong Zhao. Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material. Front. Phys. , 2019, 14(1): 13601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0845-4
https://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13601
1 C. Chang, M. Wu, D. He, Y. Pei, C. F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J. F. Li, J. He, and L. D. Zhao, 3D charge and 2D phonon transports leading to high out-of-plane ZTin n-type SnSe crystals, Science 360(6390), 778 (2018)
https://doi.org/10.1126/science.aaq1479
2 G. Tan, L. D. Zhao, and M. G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116(19), 12123 (2016)
https://doi.org/10.1021/acs.chemrev.6b00255
3 Z. H. Ge, B. P. Zhang, P. P. Shang, Y. Q. Yu, C. Chen, and J. F. Li, Enhancing thermoelectric properties of polycrystalline Bi2S3 by optimizing a ball-milling process, J. Electron. Mater. 40(5), 1087 (2011)
https://doi.org/10.1007/s11664-011-1548-6
4 L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
https://doi.org/10.1038/nature13184
5 X. Zhang, D. Wang, H. Wu, M. Yin, Y. Pei, S. Gong, L. Huang, S. J. Pennycook, J. He, and L. D. Zhao, Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues, Energy Environ. Sci. 10(11), 2420 (2017)
https://doi.org/10.1039/C7EE02530K
6 Y. M. Zhou, H. J. Wu, Y. L. Pei, C. Chang, Y. Xiao, X. Zhang, S. K. Gong, J. Q. He, and L. D. Zhao, Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2, Acta Mater. 125, 542 (2017)
https://doi.org/10.1016/j.actamat.2016.11.049
7 W. He, D. Wang, J. F. Dong, Y. Qiu, L. Fu, Y. Feng, Y. Hao, G. Wang, J. Wang, C. Liu, J. F. Li, J. He, and L. D. Zhao, Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT>1 in earth-abundant and eco-friendly SnS crystals, J. Mater. Chem. A 6(21), 10048 (2018)
https://doi.org/10.1039/C8TA03150A
8 Z. H. Ge, L. D. Zhao, D. Wu, X. Liu, B. P. Zhang, J. F. Li, and J. He, Low-cost, abundant binary sulfides as promising thermoelectric materials, Mater. Today 19(4), 227 (2016)
https://doi.org/10.1016/j.mattod.2015.10.004
9 Y. Kawamoto and H. Iwasaki, Thermoelectric properties of (Bi1–xSbx)2S–3 with orthorhombic structure, J. Electron. Mater. 43(6), 1475 (2014)
https://doi.org/10.1007/s11664-013-2742-5
10 B. Chen, C. Uher, L. Iordanidis, and M. G. Kanatzidis, Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6.33S10 and K2Bi8S13, Chem. Mater. 9(7), 1655 (1997)
https://doi.org/10.1021/cm970033m
11 Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu, and J. Sui, Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles, Nano Energy 13, 554 (2015)
https://doi.org/10.1016/j.nanoen.2015.03.036
12 Z. H. Ge, B. P. Zhang, Y. Liu, and J. F. Li, Nanostructured Bi2–xCuxS3 bulk materials with enhanced thermoelectric performance, Phys. Chem. Chem. Phys. 14(13), 4475 (2012)
https://doi.org/10.1039/c2cp23955h
13 Y. Q. Yu, B. P. Zhang, Z. H. Ge, P. P. Shang, and Y. X. Chen, Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering, Mater. Chem. Phys. 131(1–2), 216 (2011)
https://doi.org/10.1016/j.matchemphys.2011.09.010
14 J. Yang, G. Liu, J. Yan, X. Zhang, Z. Shi, and G. Qiao, Enhanced the thermoelectric properties of n-type Bi2S3 polycrystalline by iodine doping, J. Alloys Compd. 728, 351 (2017)
https://doi.org/10.1016/j.jallcom.2017.08.148
15 X. Du, F. Cai, and X. Wang, Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering, J. Alloys Compd. 587, 6 (2014)
https://doi.org/10.1016/j.jallcom.2013.10.185
16 K. Biswas, L. D. Zhao, and M. G. Kanatzidis, Telluriumfree thermoelectric: The anisotropic n-type semiconductor Bi2S3, Adv. Energy Mater. 2(6), 634 (2012)
https://doi.org/10.1002/aenm.201100775
17 L. J. Zhang, B. P. Zhang, Z. H. Ge, and C. G. Han, Fabrication and properties of Bi2S3–xSex thermoelectric polycrystals, Solid State Commun. 162, 48 (2013)
https://doi.org/10.1016/j.ssc.2013.03.013
18 W. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C. P. Opeil, G. Chen, and Z. Ren, Studies on the Bi2Te3- Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion, Energy Environ. Sci. 6(2), 552 (2013)
https://doi.org/10.1039/C2EE23549H
19 J. Pei, L. J. Zhang, B. P. Zhang, P. P. Shang, and Y. C. Liu, Enhancing the thermoelectric performance of CexBi2S3 by optimizing the carrier concentration combined with band engineering, J. Mater. Chem. C 5(47), 12492 (2017)
https://doi.org/10.1039/C7TC04082B
20 L. D. Zhao, B. P. Zhang, W. S. Liu, H. L. Zhang, and J. F. Li, Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering, J. Solid State Chem. 181(12), 3278 (2008)
https://doi.org/10.1016/j.jssc.2008.08.022
21 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
22 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
23 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
24 L. D. Zhao, B. P. Zhang, J. F. Li, H. L. Zhang, and W. S. Liu, Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering, Solid State Sci. 10(5), 651 (2008)
https://doi.org/10.1016/j.solidstatesciences.2007.10.022
25 R. Larson, V. A. Greanya, W. C. Tonjes, R. Liu, S. D. Mahanti, and C. G. Olson, Electronic structure of Bi2X3 (X=S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies, Phys. Rev. B 65(8), 085108 (2002)
https://doi.org/10.1103/PhysRevB.65.085108
26 L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
https://doi.org/10.1038/nature13184
27 Y. Xiao, C. Chang, Y. L. Pei, D. Wu, K. L. Peng, X. Y. Zhou, S. K. Gong, J. Q. He, Y. S. Zhang, Z. Zeng, and L. D. Zhao, Origin of low thermal conductivity in SnSe, Phys. Rev. B 94(12), 125203 (2016)
https://doi.org/10.1103/PhysRevB.94.125203
28 L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, and M. G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in holedoped single-crystal SnSe, Science 351(6269), 141 (2016)
https://doi.org/10.1126/science.aad3749
29 R. Chmielowski, D. Péré, C. Bera, I. Opahle, W. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. K. H. Madsen, and G. Dennler, Theoretical and experimental investigations of the thermoelectric properties of Bi2S3, J. Appl. Phys. 117(12), 125103 (2015)
https://doi.org/10.1063/1.4916528
30 P. Larson, V. A. Greanya, W. C. Tonjes, R. Liu, S. D. Mahanti, and C. G. Olson, Electronic structure of Bi2X3 (X=S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies, Phys. Rev. B 65(8), 085108 (2002)
https://doi.org/10.1103/PhysRevB.65.085108
31 K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, and X. Zhou, Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals, Energy Environ. Sci. 9(2), 454 (2016)
https://doi.org/10.1039/C5EE03366G
32 L. D. Zhao, S. H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V. P. Dravid, and M. G. Kanatzidis, High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures, J. Am. Chem. Soc. 133(50), 20476 (2011)
https://doi.org/10.1021/ja208658w
33 H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M. G. Kanatzidis, and L. D. Zhao, Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe, Energy Environ. Sci. 8(11), 3298 (2015)
https://doi.org/10.1039/C5EE02423D
34 K. Imasato, S. D. Kang, S. Ohno, and G. J. Snyder, Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Mater. Horiz. 5(1), 59 (2018)
https://doi.org/10.1039/C7MH00865A
35 Y. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S. J. Pennycook, L. Huang, J. He, and L. D. Zhao, Remarkable roles of Cu to synergistically optimize phonon and carrier Transport in n-Type PbTe-Cu2Te, J. Am. Chem. Soc. 139(51), 18732 (2017)
https://doi.org/10.1021/jacs.7b11662
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed