Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (5): 53508   https://doi.org/10.1007/s11467-022-1173-2
  本期目录
Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing
Shanwu Ke1, Li Jiang1, Yifan Zhao1, Yongyue Xiao1, Bei Jiang1(), Gong Cheng1, Facai Wu3, Guangsen Cao1, Zehui Peng1, Min Zhu2(), Cong Ye1
1. Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
2. Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3. Institute of Electronics, Chiao Tung University, Hsinchu 30010, Taiwan, China
 全文: PDF(3651 KB)   HTML
Abstract

Artificial synapse is one of the potential electronics for constructing neural network hardware. In this work, Pt/LiSiOx/TiN analog artificial synapse memristor is designed and investigated. With the increase of compliance current (C. C.) under 0.6 mA, 1 mA, and 3 mA, the current in the high resistance state (HRS) presents an increasing variation, which indicates lithium ions participates in the operation process for Pt/LiSiOx/TiN memristor. Moreover, depending on the movement of lithium ions in the functional layer, the memristor illustrates excellent conduction modulation property, so the long-term potentiation (LTP) or depression (LTD) and paired-pulse facilitation (PPF) synaptic functions are successfully achieved. The neural network simulation for pattern recognition is proposed with the recognition accuracy of 91.4%. These findings suggest the potential application of the LiSiOx memristor in the neuromorphic computing.

Key wordsartificial synapse    lithium silicate    memristor    neuromorphic computing    resistive switching
收稿日期: 2022-03-29      出版日期: 2022-06-10
Corresponding Author(s): Bei Jiang,Min Zhu   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(5): 53508.
Shanwu Ke, Li Jiang, Yifan Zhao, Yongyue Xiao, Bei Jiang, Gong Cheng, Facai Wu, Guangsen Cao, Zehui Peng, Min Zhu, Cong Ye. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys. , 2022, 17(5): 53508.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1173-2
https://academic.hep.com.cn/fop/CN/Y2022/V17/I5/53508
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Prezioso M. , Merrikh-Bayat F. , D. Hoskins B. , C. Adam G. , K. Likharev K. , B. Strukov D. . Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521( 7550): 61
https://doi.org/10.1038/nature14441
2 Wu H. , Zhao M. , Liu Y. , Yao P. , Xi Y. , Li X. , Wu W. , Zhang Q. , Tang J. , Gao B. , Qian H. . Reliability perspective on neuromorphic computing based on analog RRAM. IEEE Int. Reliab. Phys. Symp., 2019, 1– 4
3 Schmitt R. , Kubicek M. , Sediva E. , Trassin M. , C. Weber M. , Rossi A. , Hutter H. , Kreisel J. , Fiebig M. , L. Rupp J. . Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater., 2019, 29( 5): 1804782
https://doi.org/10.1002/adfm.201804782
4 A. Merolla P. V. Arthur J. Alvarez-Icaza R. S. Cassidy A. Sawada J. Akopyan F. L. Jackson B. Imam N. Guo C. Nakamura Y. Brezzo B. K. Esser I. Appuswamy R. Taba B. Amir A. D. Flickner M. P. Risk W. Manohar R. S. Modha D., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668 ( 2014)
5 Zhang C. , Shang J. , Xue W. , Tan H. , Pan L. , Yang X. , Guo S. , Hao J. , Liu G. , W. Li R. . Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem. Commun., 2016, 52( 26): 4828
https://doi.org/10.1039/C6CC00989A
6 Wang Z. , Joshi S. , E. Savel’ev S. , Jiang H. , Midya R. , Lin P. , Hu M. , Ge N. , P. Strachan J. , Li Z. , Wu Q. , Barnell M. , L. Li G. , L. Xin H. , Williams R. , F. Xia Q. , J. Yang J. . Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater., 2017, 16( 1): 101
https://doi.org/10.1038/nmat4756
7 Du L. , Wang Z. , Zhao G. . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17( 2): 23602
https://doi.org/10.1007/s11467-022-1152-7
8 Yao P. , Wu H. , Gao B. , B. Eryilmaz S. , Huang X. , Zhang W. , Zhang Q. , Deng N. , Shi L. , S. P. Wong H. , Qian H. . Face classification using electronic synapses. Nat. Commun., 2017, 8( 1): 15199
https://doi.org/10.1038/ncomms15199
9 N. Belhumeur P. , P. Hespanha J. , J. Kriegman D. . Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE. T. Pattern Anal., 1997, 19( 7): 711
10 L. Park H. , H. Kim M. , H. Lee S. . Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer. Nanoscale, 2020, 12( 44): 22502
https://doi.org/10.1039/D0NR06964G
11 Li Y. , Wang Z. , Midya R. , Xia Q. , J. Yang J. . Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D Appl. Phys., 2018, 51( 50): 503002
https://doi.org/10.1088/1361-6463/aade3f
12 Liu G. , Wang C. , Zhang W. , Pan L. , Zhang C. , Yang X. , Fan F. , Chen Y. , W. Li R. . Organic biomimicking memristor for information storage and processing applications. Adv. Electron. Mater., 2016, 2( 2): 1500298
https://doi.org/10.1002/aelm.201500298
13 Yin J. , Zeng F. , Wan Q. , Li F. , Sun Y. , Hu Y. , L. Liu J. , Q. Li G. , Pan F. . Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity. Adv. Funct. Mater., 2018, 28( 19): 1706927
https://doi.org/10.1002/adfm.201706927
14 Kim S. , Du C. , Sheridan P. , Ma W. , Choi S. , D. Lu W. . Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett., 2015, 15( 3): 2203
https://doi.org/10.1021/acs.nanolett.5b00697
15 Park Y. , S. Lee J. . Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 2017, 11( 9): 8962
https://doi.org/10.1021/acsnano.7b03347
16 N. Kozicki M. , J. Barnaby H. . Conductive bridging random access memory-materials, devices and applications. Semicond. Sci. Technol., 2016, 31( 11): 113001
https://doi.org/10.1088/0268-1242/31/11/113001
17 V. P. Bliss T. L G.. Collingridge, G. L. A synaptic model of memory: Long-term potentiation in the hippocampus, Nature 361(6407), 31 ( 1993)
18 M. Zhang X. , Liu S. , L. Zhao X. , C. Wu F. , T. Wu Q. , Wang W. , Liu M. . Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor. IEEE Electron Device Lett., 2017, 38( 9): 1208
https://doi.org/10.1109/LED.2017.2722463
19 C. Chang K. , M. Tsai T. , C. Chang T. . Dual ion effect of the lithium silicate resistance random access memory. IEEE Electron Device Lett., 2014, 35( 5): 530
https://doi.org/10.1109/LED.2014.2311295
20 Chen J. , Y. Lin C. , Li Y. , Qin C. , Lu K. , M. Wang J. , K. Chen C. , H. He Y. , C. Chang T. , S. Miao X. . LiSiOx-based analog memristive synapse for neuromorphic computing. IEEE Electron Device Lett., 2019, 40( 4): 542
https://doi.org/10.1109/LED.2019.2898443
21 L. Hsieh Y. , H. Su W. , C. Huang C. , Y. Su C. . Solution-processed black phosphorus nanoflakes for integrating nonvolatile resistive random-access memory and the mechanism unveiled. Nanotechnology, 2019, 30( 44): 445702
https://doi.org/10.1088/1361-6528/ab3606
22 Liu L. , Xiong W. , Liu Y. , Chen K. , Xu Z. , Zhou Y. , Han J. , Ye C. , Chen X. , T. Song Z. , Zhu M. . Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater., 2020, 6( 2): 1901012
https://doi.org/10.1002/aelm.201901012
23 C. Qiu Y. , Y. Yan K. , H. Yang S. , M. Jin L. , Deng H. , S. Li W. . Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@ titanium oxynitride/titanium nitride graphene nanocomposites for rechargeable lithium-ion batteries with high cycling performance. ACS Nano, 2010, 4( 11): 6515
https://doi.org/10.1021/nn101603g
24 H. Yue Y. , X. Han P. , M. Dong S. , J. Zhang K. , J. Zhang C. , Q. Shang C. , L. Cui G. . Nanostructured transition metal nitride composites as energy storage material. Chin. Sci. Bull., 2012, 57( 32): 4111
https://doi.org/10.1007/s11434-012-5301-1
25 Q. Snyder M. , A. Trebukhova S. , Ravdel B. , C. Wheeler M. , DiCarlo J. , P. Tripp C. , J. DeSisto W. . Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J. Power Sources, 2007, 165( 1): 379
https://doi.org/10.1016/j.jpowsour.2006.12.015
26 Y. Lin C. , Chen J. , H. Chen P. , C. Chang T. , Wu Y. , K. Eshraghian J. , Moon J. , Yoo S. , H. Wang Y. , C. Chen W. , Y. Wang Z. , C. Huang H. , Li Y. , Miao X. , D. Lu W. , M. Sze S. . Adaptive synaptic memory via lithium ion modulation in RRAM devices. Small, 2020, 16( 42): 2003964
https://doi.org/10.1002/smll.202003964
27 J. Zhang H. , T. Cheng C. , Zhang H. , Chen R. , J. Huang B. , D. Chen H. , H. Pei W. . Physical mechanism for the synapse behaviour of WTiOx-based memristors. Phys. Chem. Chem. Phys., 2019, 21( 42): 23758
https://doi.org/10.1039/C9CP05060D
28 Li Y. , S. Yin K. , Y. Zhang M. , Cheng L. , Lu K. , B. Long S. , S. Miao X. . Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO2-based memristor. Appl. Phys. Lett., 2017, 111( 21): 213505
https://doi.org/10.1063/1.5003217
29 Fu Y. , Dong B. , C. Su W. , Y. Lin C. , J. Zhou K. , C. Chang T. , S. Miao X. . Enhancing LiAlOx synaptic performance by reducing the Schottky barrier height for deep neural network applications. Nanoscale, 2020, 12( 45): 22970
https://doi.org/10.1039/D0NR04782A
30 Sivonxay E. , Aykol M. , A. Persson K. . The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles. Electrochim. Acta, 2020, 331 : 135344
https://doi.org/10.1016/j.electacta.2019.135344
31 Zhang Y. , Li Y. , Wang Z. , Zhao K. . Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. Nano Lett., 2014, 14( 12): 7161
https://doi.org/10.1021/nl503776u
32 Moon J. . Tailoring the oxygen content in lithiated silicon oxide for lithium-ion batteries. Int. J. Energy Res., 2021, 45( 5): 7315
https://doi.org/10.1002/er.6314
33 Zhou Z. , Yang F. , Wang S. , Wang L. , Wang X. , Wang C. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 1
https://doi.org/10.1007/s11467-021-1114-5
34 S. Zucker R. , G. Regehr W. . Short-term synaptic plasticity. Annu. Rev. Physiol., 2002, 64( 1): 355
https://doi.org/10.1146/annurev.physiol.64.092501.114547
35 J. Smith A. , Owens S. , D. Forsythe I. . Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol., 2000, 529( 3): 681
https://doi.org/10.1111/j.1469-7793.2000.00681.x
36 Li P. , M. Gao Z. , S. Huang X. , F. Wang L. , F. Zhang W. , Z. Guo H. . Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction. Front. Phys., 2018, 13( 5): 1
https://doi.org/10.1007/s11467-018-0819-6
37 P. Y. Chen, B. Lin, I. T. Wang, T. H. Hou, J. Ye, S. Vrudhula, and S. Yu, Mitigating effects of non-ideal synaptic device characteristics for on-chip learning, in: Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 194– 199 (2015)
38 P. Atluri P. , G. Regehr W. . Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci., 1996, 16( 18): 5661
https://doi.org/10.1523/JNEUROSCI.16-18-05661.1996
39 Q. Pan W. , Chen J. , Kuang R. , Li Y. , H. He Y. , R. Feng G. , S. Miao X. . Strategies to improve the accuracy of memristor-based convolutional neural networks. IEEE Trans. Electron Dev., 2020, 67( 3): 895
https://doi.org/10.1109/TED.2019.2963323
40 Sun H. Luo Z. Liu C. Ma C. Wang Z. Yin Y. Li X., A flexible BiFeO3-based ferroelectric tunnel junction memristor for neuromorphic computing , Journal of Materiomics 8(1), 144 ( 2022)
41 Lee J. , H. Ryu J. , Kim B. , Hussain F. , Mahata C. , Sim E. , Kim S. . Synaptic characteristics of amorphous boron nitride-based memristors on a highly doped silicon substrate for neuromorphic engineering. ACS Appl. Mater. Interfaces, 2020, 12( 30): 33908
https://doi.org/10.1021/acsami.0c07867
[1] Supplementary materials Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed