Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (3): 31301   https://doi.org/10.1007/s11467-022-1230-x
  本期目录
Charging and self-discharging process of a quantum battery in composite environments
Kai Xu1(), Han-Jie Zhu2, Hao Zhu3, Guo-Feng Zhang3(), Wu-Ming Liu2,4,5
1. School of Science, Tianjin University of Technology, Tianjin 300384, China
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3. School of Physics, Beihang University, Beijing 100191, China
4. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
5. Songshan Lake Materials Laboratory, Dongguan 523808, China
 全文: PDF(3867 KB)   HTML
Abstract

How to improve charging processes and suppress self-discharging processes has always been one of the key issues to achieve quantum batteries with high performance. Although a quantum battery is inevitably influenced by composite environments, this situation is still little understood, particularly regarding the influence of the memory effect of the composite environments and the coupling between composite environments. In this work, we investigate the effects of the composite environments, composed of two identical parts each containing a single cavity mode decaying to a reservoir, on the charging and self-discharging processes of a quantum battery. We show that increasing the two-mode coupling can effectively enhance the charging performance (i.e., the stored energy, the charging power, ergotropy) and restrain the self-discharging process (i.e., suppressing the process of dissipating the energy). However, different from the effect of two-mode coupling, we reveal that the memory effect of the reservoir in this composite environment is unfavorable to the charging process of the quantum battery, which is in sharp contrast to previous studies where the memory effect can significantly improve the charging performance of a quantum battery. Our results may benefit to the realization of quantum batteries with high performance under the actual complex environmental noise.

Key wordsquantum battery    quantum device
收稿日期: 2022-09-17      出版日期: 2023-01-16
Corresponding Author(s): Kai Xu,Guo-Feng Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(3): 31301.
Kai Xu, Han-Jie Zhu, Hao Zhu, Guo-Feng Zhang, Wu-Ming Liu. Charging and self-discharging process of a quantum battery in composite environments. Front. Phys. , 2023, 18(3): 31301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1230-x
https://academic.hep.com.cn/fop/CN/Y2023/V18/I3/31301
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, England, 2000
2 Arute F., Arya K., Babbush R., Bacon D., C. Bardin J.. et al.. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
https://doi.org/10.1038/s41586-019-1666-5
3 Vinjanampathy S., Anders J.. Quantum thermodynamics. Contemp. Phys., 2016, 57(4): 545
https://doi.org/10.1080/00107514.2016.1201896
4 Uzdin R., Levy A., Kosloff R.. Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X, 2015, 5(3): 031044
https://doi.org/10.1103/PhysRevX.5.031044
5 Campisi M., Fazio R.. Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor., 2016, 49(34): 345002
https://doi.org/10.1088/1751-8113/49/34/345002
6 Karimi B., P. Pekola J.. Otto refrigerator based on a superconducting qubit: Classical and quantum performance. Phys. Rev. B, 2016, 94(18): 184503
https://doi.org/10.1103/PhysRevB.94.184503
7 Marchegiani G., Virtanen P., Giazotto F., Campisi M.. Self-oscillating Josephson quantum heat engine. Phys. Rev. Appl., 2016, 6(5): 054014
https://doi.org/10.1103/PhysRevApplied.6.054014
8 N. Bera M., Riera A., Lewenstein M., Winter A.. Generalized laws of thermodynamics in the presence of correlations. Nat. Commun., 2017, 8(1): 2180
https://doi.org/10.1038/s41467-017-02370-x
9 Perarnau-Llobet M., Wilming H., Riera A., Gallego R., Eisert J.. Strong coupling corrections in quantum thermodynamics. Phys. Rev. Lett., 2018, 120(12): 120602
https://doi.org/10.1103/PhysRevLett.120.120602
10 Karimi B., P. Pekola J., Campisi M., Fazio R.. Coupled qubits as a quantum heat switch. Quantum Sci. Technol., 2017, 2(4): 044007
https://doi.org/10.1088/2058-9565/aa8330
11 Alicki R., Fannes M.. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E, 2013, 87(4): 042123
https://doi.org/10.1103/PhysRevE.87.042123
12 Campaioli F.A. Pollock F.Vinjanampathy S., in: Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Springer International, Cham, 2018, pp 207–225
13 Bhattacharjee S., Dutta A.. Quantum thermal machines and batteries. Eur. Phys. J. B, 2021, 94(12): 239
https://doi.org/10.1140/epjb/s10051-021-00235-3
14 Niedenzu W., Mukherjee V., Ghosh A., G. Kofman A., Kurizki G.. Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun., 2018, 9(1): 165
https://doi.org/10.1038/s41467-017-01991-6
15 Rossini D., M. Andolina G., Rosa D., Carrega M., Polini M.. Quantum advantage in the charging process of Sachdev−Ye−Kitaev batteries. Phys. Rev. Lett., 2020, 125(23): 236402
https://doi.org/10.1103/PhysRevLett.125.236402
16 K. Hu C.Qiu J.J. P. Souza P.Yuan J.Zhou Y. Zhang L.Chu J.Pan X.Hu L.Li J. Xu Y.Zhong Y. Liu S.Yan F.Tan D.Bachelard R.J. Villas-Boas C.C. Santos A.Yu D., Optimal charging of a superconducting quantum battery, arXiv: 2108.04298 (2021)
17 P. Pekola J.. Towards quantum thermodynamics in electronic circuits. Nat. Phys., 2015, 11(2): 118
https://doi.org/10.1038/nphys3169
18 C. Santos A., Saguia A., S. Sarandy M.. Stable and charge-switchable quantum batteries. Phys. Rev. E, 2020, 101(6): 062114
https://doi.org/10.1103/PhysRevE.101.062114
19 L. Giorgi G., Campbell S.. Correlation approach to work extraction from finite quantum systems. J. Phys. At. Mol. Opt. Phys., 2015, 48(3): 035501
https://doi.org/10.1088/0953-4075/48/3/035501
20 Fusco L., Paternostro M., De Chiara G.. Work extraction and energy storage in the Dicke model. Phys. Rev. E, 2016, 94(5): 052122
https://doi.org/10.1103/PhysRevE.94.052122
21 Francica G., Goold J., Plastina F., Paternostro M.. Daemonic ergotropy: Enhanced work extraction from quantum correlations. npj Quantum Inf., 2017, 3: 12
https://doi.org/10.1038/s41534-017-0012-8
22 Monsel J., Fellous-Asiani M., Huard B., Auffeves A.. The energetic cost of work extraction. Phys. Rev. Lett., 2020, 124(13): 130601
https://doi.org/10.1103/PhysRevLett.124.130601
23 Q. Dou F., J. Wang Y., A. Sun J.. Closed-loop three-level charged quantum battery. Europhys. Lett., 2020, 131(4): 43001
https://doi.org/10.1209/0295-5075/131/43001
24 V. Hovhannisyan K., Perarnau-Llobet M., Huber M., Acin A.. Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett., 2013, 111(24): 240401
https://doi.org/10.1103/PhysRevLett.111.240401
25 M. Andolina G., Keck M., Mari A., Campisi M., Gio-vannetti V., Polini M.. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett., 2019, 122(4): 047702
https://doi.org/10.1103/PhysRevLett.122.047702
26 H. Kamin F., T. Tabesh F., Salimi S., C. Santos A.. Entanglement, coherence, and charging process of quantum batteries. Phys. Rev. E, 2020, 102(5): 052109
https://doi.org/10.1103/PhysRevE.102.052109
27 X. Liu J., L. Shi H., H. Shi Y., H. Wang X., L. Yang W.. Entanglement and work extraction in the central-spin quantum battery. Phys. Rev. B, 2021, 104(24): 245418
https://doi.org/10.1103/PhysRevB.104.245418
28 Y. Gyhm J., Safranek D., Rosa D.. Quantum charging advantage cannot be extensive without global operations. Phys. Rev. Lett., 2022, 128(14): 140501
https://doi.org/10.1103/PhysRevLett.128.140501
29 Ferraro D., Campisi M., M. Andolina G., Pellegrini V., Polini M.. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett., 2018, 120(11): 117702
https://doi.org/10.1103/PhysRevLett.120.117702
30 Campaioli F., A. Pollock F., C. Binder F., Celeri L., Goold J., Vinjanampathy S., Modi K.. Enhancing the charging power of quantum batteries. Phys. Rev. Lett., 2017, 118(15): 150601
https://doi.org/10.1103/PhysRevLett.118.150601
31 C. Binder F., Vinjanampathy S., Modi K., Goold J.. Quantacell: Powerful charging of quantum batteries. New J. Phys., 2015, 17(7): 075015
https://doi.org/10.1088/1367-2630/17/7/075015
32 P. García-Pintos L., Hamma A., del Campo A.. Fluctuations in extractable work bound the charging power of quantum batteries. Phys. Rev. Lett., 2020, 125(4): 040601
https://doi.org/10.1103/PhysRevLett.125.040601
33 Rossini D., M. Andolina G., Polini M.. Many-body localized quantum batteries. Phys. Rev. B, 2019, 100(11): 115142
https://doi.org/10.1103/PhysRevB.100.115142
34 Friis N., Huber M.. Precision and work fluctuations in Gaussian battery charging. Quantum, 2018, 2: 61
https://doi.org/10.22331/q-2018-04-23-61
35 McKay E., A. Rodriguez-Briones N., Martin-Martinez E.. Fluctuations of work cost in optimal generation of correlations. Phys. Rev. E, 2018, 98(3): 032132
https://doi.org/10.1103/PhysRevE.98.032132
36 Perarnau-Llobet M., Uzdin R.. Collective operations can extremely reduce work fluctuations. New J. Phys., 2019, 21(8): 083023
https://doi.org/10.1088/1367-2630/ab36a9
37 Crescente A., Carrega M., Sassetti M., Ferraro D.. Charging and energy fluctuations of a driven quantum battery. New J. Phys., 2020, 22(6): 063057
https://doi.org/10.1088/1367-2630/ab91fc
38 P. Le T., Levinsen J., Modi K., M. Parish M., A. Pollock F.. Spin-chain model of a many-body quantum battery. Phys. Rev. A, 2018, 97(2): 022106
https://doi.org/10.1103/PhysRevA.97.022106
39 Sen K., Sen U.. Local passivity and entanglement in shared quantum batteries. Phys. Rev. A, 2021, 104(3): L030402
https://doi.org/10.1103/PhysRevA.104.L030402
40 Peng L., B. He W., Chesi S., Q. Lin H., W. Guan X.. Lower and upper bounds of quantum battery power in multiple central spin systems. Phys. Rev. A, 2021, 103(5): 052220
https://doi.org/10.1103/PhysRevA.103.052220
41 Julià-Farré S., Salamon T., Riera A., N. Bera M., Lewenstein M.. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res., 2020, 2(2): 023113
https://doi.org/10.1103/PhysRevResearch.2.023113
42 Pirmoradian F., Molmer K.. Aging of a quantum battery. Phys. Rev. A, 2019, 100(4): 043833
https://doi.org/10.1103/PhysRevA.100.043833
43 T. Mitchison M., Goold J., Prior J.. Charging a quantum battery with linear feedback control. Quantum, 2021, 5: 500
https://doi.org/10.22331/q-2021-07-13-500
44 Crescente A., Carrega M., Sassetti M., Ferraro D.. Ultrafast charging in a two-photon Dicke quantum battery. Phys. Rev. B, 2020, 102(24): 245407
https://doi.org/10.1103/PhysRevB.102.245407
45 Y. Zhang Y., R. Yang T., B. Fu L., G. Wang X.. Powerful harmonic charging in a quantum battery. Phys. Rev. E, 2019, 99(5): 052106
https://doi.org/10.1103/PhysRevE.99.052106
46 Q. Dou F., J. Wang Y., A. Sun J.. Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity. Front. Phys., 2022, 17(3): 31503
https://doi.org/10.1007/s11467-021-1130-5
47 Q. Dou F., Zhou H., A. Sun J.. Cavity Heisenberg-spin-chain quantum battery. Phys. Rev. A, 2022, 106(3): 032212
https://doi.org/10.1103/PhysRevA.106.032212
48 Q. Dou F., Q. Lu Y., J. Wang Y., A. Sun J.. Extended Dicke quantum battery with interatomic interactions and driving field. Phys. Rev. B, 2022, 105(11): 115405
https://doi.org/10.1103/PhysRevB.105.115405
49 P. Breuer H.Petruccione F., Theory of Open Quantum Systems, Oxford University Press, New York, 2002
50 P. Breuer H., M. Laine E., Piilo J.. Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett., 2009, 103(21): 210401
https://doi.org/10.1103/PhysRevLett.103.210401
51 L. Franco R., Bellomo B., Maniscalco S., Compagno G.. Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. B, 2013, 27(01n03): 1345053
https://doi.org/10.1142/S0217979213450537
52 de Vega I., Alonso D.. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys., 2017, 89(1): 015001
https://doi.org/10.1103/RevModPhys.89.015001
53 P. Breuer H., M. Laine E., Piilo J., Vacchini B.. Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys., 2016, 88(2): 021002
https://doi.org/10.1103/RevModPhys.88.021002
54 Yao Y., Q. Shao X.. Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control. Phys. Rev. E, 2022, 106(1): 014138
https://doi.org/10.1103/PhysRevE.106.014138
55 Ghosh S., Chanda T., Mal S., Sen(De) A.. Fast charging of a quantum battery assisted by noise. Phys. Rev. A, 2021, 104(3): 032207
https://doi.org/10.1103/PhysRevA.104.032207
56 Xu K., G. Li H., G. Li Z., J. Zhu H., F. Zhang G., M. Liu W.. Charging performance of quantum batteries in a double-layer environment. Phys. Rev. A, 2022, 106(1): 012425
https://doi.org/10.1103/PhysRevA.106.012425
57 Çakmak B.. Ergotropy from coherences in an open quantum system. Phys. Rev. E, 2020, 102(4): 042111
https://doi.org/10.1103/PhysRevE.102.042111
58 Pirmoradian F., Molmer K.. Aging of a quantum battery. Phys. Rev. A, 2019, 100(4): 043833
https://doi.org/10.1103/PhysRevA.100.043833
59 Barra F.. Dissipative charging of a quantum battery. Phys. Rev. Lett., 2019, 122(21): 210601
https://doi.org/10.1103/PhysRevLett.122.210601
60 Carrasco J., R. Maze J., Hermann-Avigliano C., Barra F.. Collective enhancement in dissipative quantum batteries. Phys. Rev. E, 2022, 105(6): 064119
https://doi.org/10.1103/PhysRevE.105.064119
61 Ghosh S., Sen(De) A.. Dimensional enhancements in a quantum battery with imperfections. Phys. Rev. A, 2022, 105(2): 022628
https://doi.org/10.1103/PhysRevA.105.022628
62 J. Lu W., Chen J., M. Kuang L., G. Wang X.. Optimal state for a Tavis−Cummings quantum battery via the Bethe ansatz method. Phys. Rev. A, 2021, 104(4): 043706
https://doi.org/10.1103/PhysRevA.104.043706
63 Mayo F., J. Roncaglia A.. Collective effects and quantum coherence in dissipative charging of quantum batteries. Phys. Rev. A, 2022, 105(6): 062203
https://doi.org/10.1103/PhysRevA.105.062203
64 Q. Quach J., J. Munro W.. Using dark states to charge and stabilize open quantum batteries. Phys. Rev. Appl., 2020, 14(2): 024092
https://doi.org/10.1103/PhysRevApplied.14.024092
65 Chang W., R. Yang T., Dong H., B. Fu L., G. Wang X., Y. Zhang Y.. Optimal building block of multipartite quantum battery in the driven-dissipative charging. New J. Phys., 2021, 23(10): 103026
https://doi.org/10.1088/1367-2630/ac2a5b
66 Delmonte A., Crescente A., Carrega M., Ferraro D., Sassetti M.. Characterization of a two-photon quantum battery: Initial conditions, stability and work extraction. Entropy (Basel), 2021, 23(5): 612
https://doi.org/10.3390/e23050612
67 Zhang X.Blaauboer M., Enhanced energy transfer in a Dicke quantum battery, arXiv: 1812.10139 (2018)
68 Zhao F., Q. Dou F., Zhao Q.. Charging performance of the Su−Schrieffer−Heeger quantum battery. Phys. Rev. Res., 2022, 4(1): 013172
https://doi.org/10.1103/PhysRevResearch.4.013172
69 Farina D., M. Andolina G., Mari A., Polini M., Giovannetti V.. Charger-mediated energy transfer for quantum batteries: An open-system approach. Phys. Rev. B, 2019, 99(3): 035421
https://doi.org/10.1103/PhysRevB.99.035421
70 T. Tabesh F., H. Kamin F., Salimi S.. Environment-mediated charging process of quantum batteries. Phys. Rev. A, 2020, 102(5): 052223
https://doi.org/10.1103/PhysRevA.102.052223
71 Yao Y., Q. Shao X.. Stable charging of a Rydberg quantum battery in an open system. Phys. Rev. E, 2021, 104(4): 044116
https://doi.org/10.1103/PhysRevE.104.044116
72 Zhao F., Q. Dou F., Zhao Q.. Quantum battery of interacting spins with environmental noise. Phys. Rev. A, 2021, 103(3): 033715
https://doi.org/10.1103/PhysRevA.103.033715
73 Xu K., J. Zhu H., F. Zhang G., M. Liu W.. Enhancing the performance of an open quantum battery via environment engineering. Phys. Rev. E, 2021, 104(6): 064143
https://doi.org/10.1103/PhysRevE.104.064143
74 H. Kamin F., T. Tabesh F., Salimi S., Kheirandish F., C. Santos A.. Non-Markovian effects on charging and self-discharging process of quantum batteries. New J. Phys., 2020, 22(8): 083007
https://doi.org/10.1088/1367-2630/ab9ee2
75 C. Santos A.. Quantum advantage of two-level batteries in the self-discharging process. Phys. Rev. E, 2021, 103(4): 042118
https://doi.org/10.1103/PhysRevE.103.042118
76 B. Arjmandi M., Mohammadi H., C. Santos A.. Enhancing self-discharging process with disordered quantum batteries. Phys. Rev. E, 2022, 105(5): 054115
https://doi.org/10.1103/PhysRevE.105.054115
77 Gherardini S., Campaioli F., Caruso F., C. Binder F.. Stabilizing open quantum batteries by sequential measurements. Phys. Rev. Res., 2020, 2(1): 013095
https://doi.org/10.1103/PhysRevResearch.2.013095
78 C. Santos A., Cakmak B., Campbell S., T. Zinner N.. Stable adiabatic quantum batteries. Phys. Rev. E, 2019, 100(3): 032107
https://doi.org/10.1103/PhysRevE.100.032107
79 Y. Bai S.H. An J., Floquet engineering to reactivate a dissipative quantum battery, Phys. Rev. A 102, 060201(R) (2020)
80 Romach Y., Muller C., Unden T., J. Rogers L., Isoda T., M. Itoh K., Markham M., Stacey A., Meijer J., Pez-zagna S., Naydenov B., P. McGuinness L., Bar-Gill N., Jelezko F.. Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett., 2015, 114(1): 017601
https://doi.org/10.1103/PhysRevLett.114.017601
81 Y. Xia K., Twamley J.. All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X, 2013, 3(3): 031013
https://doi.org/10.1103/PhysRevX.3.031013
82 H. Liu B., Li L., F. Huang Y., F. Li C., C. Guo G., M. Laine E., P. Breuer H., Piilo J.. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys., 2011, 7(12): 931
https://doi.org/10.1038/nphys2085
83 Blais A., S. Huang R., Wallraff A., M. Girvin S., J. Schoelkopf R.. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
84 Chiuri A., Greganti C., Mazzola L., Paternostro M., Mataloni P.. Linear optics simulation of quantum non-Markovian dynamics. Sci. Rep., 2012, 2(1): 968
https://doi.org/10.1038/srep00968
85 E. Allahverdyan A., Balian R., M. Nieuwenhuizen T.. Maximal work extraction from finite quantum systems. Europhys. Lett., 2004, 67(4): 565
https://doi.org/10.1209/epl/i2004-10101-2
86 Lenard A.. Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys., 1978, 19(6): 575
https://doi.org/10.1007/BF01011769
87 Pusz W., L. Woronowicz S.. Passive states and KMS states for general quantum systems. Commun. Math. Phys., 1978, 58(3): 273
https://doi.org/10.1007/BF01614224
88 Lörch N., Bruder C., Brunner N., P. Hofer P.. Optimal work extraction from quantum states by photo-assisted Cooper pair tunneling. Quantum Sci. Technol., 2018, 3(3): 035014
https://doi.org/10.1088/2058-9565/aacbf3
89 Seah S.Nimmrichter S.Scarani V., Work production of quantum rotor engines, New J. Phys. 20(4), 043045 (2018)
90 Niedenzu W., Mukherjee V., Ghosh A., G. Kofman A., Kurizki G.. Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun., 2018, 9(1): 165
https://doi.org/10.1038/s41467-017-01991-6
91 M. Garraway B.. Decay of an atom coupled strongly to a reservoir. Phys. Rev. A, 1997, 55(6): 4636
https://doi.org/10.1103/PhysRevA.55.4636
92 M. Garraway B.. Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A, 1997, 55(3): 2290
https://doi.org/10.1103/PhysRevA.55.2290
93 J. Dalton B., M. Barnett S., M. Garraway B.. Theory of pseudomodes in quantum optical processes. Phys. Rev. A, 2001, 64(5): 053813
https://doi.org/10.1103/PhysRevA.64.053813
94 Pleasance G., M. Garraway B., Petruccione F.. Generalized theory of pseudomodes for exact descriptions of non-Markovian quantum processes. Phys. Rev. Res., 2020, 2(4): 043058
https://doi.org/10.1103/PhysRevResearch.2.043058
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed