Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (3): 33601   https://doi.org/10.1007/s11467-022-1231-9
  本期目录
The rise of two-dimensional tellurium for next-generation electronics and optoelectronics
Tao Zhu1,2, Yao Zhang1,2, Xin Wei2, Man Jiang1(), Hua Xu2()
1. State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi’an 710069, China
2. Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
 全文: PDF(7487 KB)   HTML
Abstract

Single-element two-dimensional (2D) tellurium (Te) which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family. 2D Te possesses high carrier mobility, wide tunable bandgap, strong light-matter interaction, better environmental stability, and strong anisotropy, making Te exhibit tremendous application potential in next-generation electronic and optoelectronic devices. However, as an emerging 2D material, the research on fundamental property and device application of Te is still in its infancy. Hence, this review summarizes the most recent research progresses about the new star 2D Te and discusses its future development direction. Firstly, the structural features, basic physical properties, and various preparation methods of 2D Te are systemically introduced. Then, we emphatically summarize the booming development of 2D Te-based electronic and optoelectronic devices including field effect transistors, photodetectors and van der Waals heterostructure photodiodes. Finally, the future challenges, opportunities, and development directions of 2D Te-based electronic and optoelectronic devices are prospected.

Key wordstwo-dimensional materials    tellurium    van der Waals heterostructure    electronic    optoelectronic
收稿日期: 2022-11-05      出版日期: 2023-01-06
Corresponding Author(s): Man Jiang,Hua Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(3): 33601.
Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys. , 2023, 18(3): 33601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1231-9
https://academic.hep.com.cn/fop/CN/Y2023/V18/I3/33601
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
DeviceResponsivity (A/W)Detectivity (Jones)On/off ratioResponse timeSpectral range (nm)Refs.
2D Te151.24×108104/532 nm[107]
2D Te9861.19×1010/2.5 μsVis to millimeter wave[130]
2D Te2.534.68×108/[75]
1D Te66501.23×1012/25.5 μs500?2500 nm[75]
2D Te/MoSe221062.91×101310522 ms405?808 nm[140]
2D Te/InSe0.451013104600 μs300?1000 nm[98]
2D Te/MoS228.42.7×1010107/980?3000 nm[141]
2D Te/Gra0.09641.04×10910328 μsVis to MIR[142]
2D Te/In2S31462.1 ×10111053 ms405?808 nm[147]
2D Te/Si6.497.79×101210526 ms325?1064 nm[146]
2D Te/Si2491.15×10111084.4 ms370.6?2240 nm[113]
1D Te/WS24711.24×10125214.7 ms400?750 nm[148]
1D Te/MoTe23.0×1044.9×1011/4.8 ms520, 940, 1310 nm[151]
1D Te/Sb2Se3110.81010-1013/31 ms405?4500 nm[152]
1D Te/ReS21807.2×1091035 msVis[149]
1DTe/Bi2O2Se1302.5×1011104330 μs405, 532, 635 nm[150]
1D Te/2D Te305.11×10111042.37 s405, 532, 638 nm[153]
Tab.1  
1 S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
2 Tan C. , Cao X. , J. Wu X. , He Q. , Yang J. , Zhang X. , Chen J. , Zhao W. , Han S. , H. Nam G. , Sindoro M. , Zhang H. . Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017, 117(9): 6225
https://doi.org/10.1021/acs.chemrev.6b00558
3 Zhang H. . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451
https://doi.org/10.1021/acsnano.5b05040
4 Akinwande D. , Huyghebaert C. , H. Wang C. , I. Serna M. , Goossens S. , J. Li L. , S. P. Wong H. , H. L. Koppens F. . Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573(7775): 507
https://doi.org/10.1038/s41586-019-1573-9
5 J. Mannix A. , F. Zhou X. , Kiraly B. , D. Wood J. , Alducin D. , D. Myers B. , Liu X. , L. Fisher B. , Santiago U. , R. Guest J. , J. Yacaman M. , Ponce A. , R. Oganov A. , C. Hersam M. , P. Guisinger N. . Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 2015, 350(6267): 1513
https://doi.org/10.1126/science.aad1080
6 Zhai W. , Xiong T. , K. He Z. , Lu S. , Lai Z. , He Q. , Tan C. , Zhang H. . Nanodots derived from layered materials: Synthesis and applications. Adv. Mater., 2021, 33(46): 2006661
https://doi.org/10.1002/adma.202006661
7 Xiao Y. , Zhou M. , Liu J. , Xu J. , Fu L. . Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater., 2019, 62(6): 759
https://doi.org/10.1007/s40843-018-9398-1
8 Chowdhury T. , C. Sadler E. , J. Kempa T. . Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem. Rev., 2020, 120(22): 12563
https://doi.org/10.1021/acs.chemrev.0c00505
9 Roy S. , Zhang X. , B. Puthirath A. , Meiyazhagan A. , Bhattacharyya S. . et al.. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater., 2021, 33(44): 2101589
https://doi.org/10.1002/adma.202101589
10 Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
11 Zhao H. , W. Zhang C. , X. Ji W. , W. Zhang R. , S. Li S. , S. Yan S. , M. Zhang B. , Li P. , J. Wang P. . Unexpected giant-gap quantum spin hall insulator in chemically decorated plumbene monolayer. Sci. Rep., 2016, 6(1): 20152
https://doi.org/10.1038/srep20152
12 B. Lu S. , L. Miao L. , N. Guo Z. , Qi X. , J. Zhao C. , Zhang H. , C. Wen S. , Y. Tang D. , Y. Fan D. . Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express, 2015, 23(9): 11183
https://doi.org/10.1364/OE.23.011183
13 S. Novoselov K. , V. Andreeva D. , Ren W. , Shan G. . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
https://doi.org/10.1007/s11467-018-0835-6
14 Chhowalla M. , Jena D. , Zhang H. . Two-dimensional semiconductors for transistors. Nat. Rev. Mater., 2016, 1(11): 16052
https://doi.org/10.1038/natrevmats.2016.52
15 Liu Y. , Duan X. , J. Shin H. , Park S. , Huang Y. , Duan X. . Promises and prospects of two-dimensional transistors. Nature, 2021, 591(7848): 43
https://doi.org/10.1038/s41586-021-03339-z
16 Hu C. . Finfet and UTB - how to make very short channel MOSFETs. ECS Trans., 2013, 50(9): 17
https://doi.org/10.1149/05009.0017ecst
17 Chen C. , Chen X. , Wu C. , Wang X. , Ping Y. , Wei X. , Zhou X. , Lu J. , Zhu L. , Zhou J. , Zhai T. , Han J. , Xu H. . Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater., 2022, 34(2): 2107512
https://doi.org/10.1002/adma.202107512
18 Zhao C. , Tan C. , H. Lien D. , Song X. , Amani M. , Hettick M. , Y. Y. Nyein H. , Yuan Z. , Li L. , C. Scott M. , Javey A. . Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol., 2020, 15(1): 53
https://doi.org/10.1038/s41565-019-0585-9
19 B. Koman V. , Liu P. , Kozawa D. , T. Liu A. , L. Cottrill A. , Son Y. , A. Lebron J. , S. Strano M. . Colloidal nanoelectronic state machines based on 2D materials for aerosolizable electronics. Nat. Nanotechnol., 2018, 13(9): 819
https://doi.org/10.1038/s41565-018-0194-z
20 F. Mak K. , Shan J. . Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
https://doi.org/10.1038/nphoton.2015.282
21 Cheng Z.Cao R.Wei K.Yao Y.Liu X.Kang J.Dong J.Shi Z.Zhang H.Zhang X., 2D materials enabled next‐generation integrated optoelectronics: From fabrication to applications, Adv. Sci. (Weinh.) 8(11), 2003834 (2021)
22 Tan C. , Luo Z. , Chaturvedi A. , Cai Y. , Du Y. , Gong Y. , Huang Y. , Lai Z. , Zhang X. , Zheng L. , Qi X. , H. Goh M. , Wang J. , Han S. , J. Wu X. , Gu L. , Kloc C. , Zhang H. . Preparation of high-percentage 1T′-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater., 2018, 30(9): 1705509
https://doi.org/10.1002/adma.201705509
23 Chia X. , Pumera M. . Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal., 2018, 1(12): 909
https://doi.org/10.1038/s41929-018-0181-7
24 Pomerantseva E. , Gogotsi Y. . Two-dimensional heterostructures for energy storage. Nat. Energy, 2017, 2(7): 17089
https://doi.org/10.1038/nenergy.2017.89
25 Das S. , Pandey D. , Thomas J. , Roy T. . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
https://doi.org/10.1002/adma.201802722
26 Kostarelos K. . Translating graphene and 2D materials into medicine. Nat. Rev. Mater., 2016, 1(11): 16084
https://doi.org/10.1038/natrevmats.2016.84
27 Cheng L.Wang X.Gong F.Liu T.Liu Z., 2D Nanomaterials for cancer theranostic applications, Adv. Mater. 32(13), 1902333 (2020)
28 Jiang H. , Zheng L. , Liu Z. , Wang X. . Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat, 2020, 2(6): 1077
https://doi.org/10.1002/inf2.12072
29 Wang Z. , Mi B. . Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol., 2017, 51(15): 8229
https://doi.org/10.1021/acs.est.7b01466
30 H. L. Koppens F. , Mueller T. , Avouris P. , C. Ferrari A. , S. Vitiello M. , Polini M. . Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10): 780
https://doi.org/10.1038/nnano.2014.215
31 X. Qiu Q. , M. Huang Z. . Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater., 2021, 33(15): 2008126
https://doi.org/10.1002/adma.202008126
32 W. Zhuge F. , Zheng Z. , Luo P. , Lv L. , Huang Y. , Q. Li H. , Y. Zhai T. . Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol., 2017, 2(8): 1700005
https://doi.org/10.1002/admt.201700005
33 H. Li X. , X. Guo Y. , J. Ren Y. , J. Peng J. , S. Liu J. , Wang C. , Zhang H. . Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304
https://doi.org/10.1007/s11467-021-1055-z
34 Cheng M. , B. Yang J. , H. Li X. , Li H. , F. Du R. , P. Shi J. , He J. . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
35 Li X.Chen C.Yang Y.Lei Z.Xu H., 2D Re-based transition metal chalcogenides: Progress, challenges, and opportunities, Adv. Sci. (Weinh.) 7(23), 2002320 (2020)
36 Liu Y. , D. Duan X. , Huang Y. , F. Duan X. . Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev., 2018, 47(16): 6388
https://doi.org/10.1039/C8CS00318A
37 Cao R. , D. Wang H. , N. Guo Z. , K. Sang D. , Y. Zhang L. , L. Xiao Q. , P. Zhang Y. , Y. Fan D. , Q. Li J. , Zhang H. . Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater., 2019, 7(12): 1900020
https://doi.org/10.1002/adom.201900020
38 J. Dai M. , Y. Chen H. , K. Wang F. , S. Long M. , M. Shang H. , X. Hu Y. , Li W. , Y. Ge C. , Zhang J. , Y. Zhai T. , Q. Fu Y. , A. Hu P. . Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano, 2020, 14(7): 9098
https://doi.org/10.1021/acsnano.0c04329
39 C. Kim Y. , W. Bae T. , J. Kwon H. , I. Kim B. , H. Ahn S. . Infrared (IR) image synthesis method of IR real background and modeled IR target. Infrared Phys. Technol., 2014, 63: 54
https://doi.org/10.1016/j.infrared.2013.12.006
40 J. Pi L. , F. Wang P. , J. Liang S. , Luo P. , Y. Wang H. , Y. Li D. , X. Li Z. , Chen P. , Zhou X. , Miao F. , Y. Zhai T. . Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron., 2022, 5(4): 248
https://doi.org/10.1038/s41928-022-00747-5
41 Tan C. , Yin S. , Chen J. , Lu Y. , Wei W. , Du H. , Liu K. , Wang F. , Zhai T. , Li L. . Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano, 2021, 15(5): 8328
https://doi.org/10.1021/acsnano.0c09593
42 Zheng J. , Yang Z. , Si C. , Liang Z. , Chen X. , Cao R. , Guo Z. , Wang K. , Zhang Y. , Ji J. , Zhang M. , Fan D. , Zhang H. . Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability. ACS Photonics, 2017, 4(6): 1466
https://doi.org/10.1021/acsphotonics.7b00231
43 Yang W.Xin K.Yang J.Xu Q.Shan C.Wei Z., 2D ultrawide bandgap semiconductors: Odyssey and challenges, Small Methods 6(4), 2101348 (2022)
44 J. Zha J. , C. Luo M. , Ye M. , Ahmed T. , C. Yu X. , H. Lien D. , Y. He Q. , Y. Lei D. , C. Ho J. , Bullock J. , B. Crozier K. , L. Tan C. . Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater., 2022, 32(15): 2111970
https://doi.org/10.1002/adfm.202111970
45 Guan X. , Yu X. , Periyanagounder D. , R. Benzigar M. , K. Huang J. , H. Lin C. , Kim J. , Singh S. , Hu L. , Liu G. , Li D. , H. He J. , Yan F. , J. Wang Q. , Wu T. . Recent progress in short- to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater., 2021, 9(4): 2001708
https://doi.org/10.1002/adom.202001708
46 Yang Y. , X. Zhang K. , B. Zhang L. , Hong G. , Chen C. , M. Jing H. , B. Lu J. , Wang P. , S. Chen X. , Wang L. , Xu H. . Controllable growth of type-II Dirac semimetal PtTe2 atomic layer on Au substrate for sensitive room temperature terahertz photodetection. InfoMat, 2021, 3(6): 705
https://doi.org/10.1002/inf2.12193
47 Dai M. , Wang C. , Ye M. , Zhu S. , Han S. , Sun F. , Chen W. , Jin Y. , Chua Y. , J. Wang Q. . High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric van der Waals contacts. ACS Nano, 2022, 16(1): 295
https://doi.org/10.1021/acsnano.1c06286
48 J. Reed E. . Two-dimensional tellurium. Nature, 2017, 552(7683): 40
https://doi.org/10.1038/d41586-017-07159-y
49 H. Yang S. . Chirality tweaks spins in tellurium. Nat. Mater., 2022, 21(5): 494
https://doi.org/10.1038/s41563-022-01228-y
50 Wang Y. , Qiu G. , Wang R. , Huang S. , Wang Q. , Liu Y. , Du Y. , A. III Goddard W. , J. Kim M. , Xu X. , D. Ye P. , Wu W. . Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron., 2018, 1(4): 228
https://doi.org/10.1038/s41928-018-0058-4
51 F. Shen C. , H. Liu Y. , B. Wu J. , Xu C. , Z. Cui D. , Li Z. , Z. Liu Q. , R. Li Y. , X. Wang Y. , Cao X. , Kumazoe H. , Shimojo F. , Krishnamoorthy A. , K. Kalia R. , Nakano A. , D. Vashishta P. , R. Amer M. , N. Abbas A. , Wang H. , Z. Wu W. , W. Zhou C. . Tellurene photodetector with high gain and wide bandwidth. ACS Nano, 2020, 14(1): 303
https://doi.org/10.1021/acsnano.9b04507
52 A. Nguyen D. , Jo Y. , U. Tran T. , S. Jeong M. , Kim H. , Im H. . Electrically and optically controllable p–n junction memtransistor based on an Al2O3 encapsulated 2D Te/ReS2 van der Waals heterostructure. Small Methods, 2021, 5(12): 2101303
https://doi.org/10.1002/smtd.202101303
53 Z. Yan B.R. Li G.N. Shi B.T. Liu J.K. Nie H.J. Yang K.T. Zhang B.He J., 2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber, Nanophotonics 9(8), 2593 (2020)
54 Zheng B. , Wu Z. , Guo F. , Ding R. , Mao J. , Xie M. , P. Lau S. , Hao J. . Large-area tellurium/germanium heterojunction grown by molecular beam epitaxy for high-performance self-powered photodetector. Adv. Opt. Mater., 2021, 9(20): 2101052
https://doi.org/10.1002/adom.202101052
55 Huang W. , Zhang Y. , You Q. , Huang P. , Wang Y. , N. Huang Z. , Ge Y. , Wu L. , Dong Z. , Dai X. , Xiang Y. , Li J. , Zhang X. , Zhang H. . Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small, 2019, 15(23): 1900902
https://doi.org/10.1002/smll.201900902
56 Wang C. , Z. Wang P. , Y. Chen S. , Wen W. , Q. Xiong W. , Z. Liu Z. , F. Liu Y. , Q. He J. , S. Wang Y. . Anisotropic properties of tellurium nanoflakes probed by polarized Raman and transient absorption microscopy: Implications for polarization-sensitive applications. ACS Appl. Nano Mater., 2022, 5(2): 1767
https://doi.org/10.1021/acsanm.1c03132
57 W. Liu J. , H. Zhu J. , L. Zhang C. , W. Liang H. , H. Yu S. . Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc., 2010, 132(26): 8945
https://doi.org/10.1021/ja910871s
58 Peng H. , Kioussis N. , J. Snyder G. . Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B, 2014, 89(19): 195206
https://doi.org/10.1103/PhysRevB.89.195206
59 Wang Y. , Wang Y. , Dong Y. , Zhou L. , Wei H. , Long M. , Xiao S. , He J. . The nonlinear optical transition bleaching in tellurene. Nanoscale, 2021, 13(37): 15882
https://doi.org/10.1039/D1NR03639D
60 P. Hermann J. , Quentin G. , M. Thuillier J. . Determination of the d14 piezoelectric coefficient of tellurium. Solid State Commun., 1969, 7(1): 161
https://doi.org/10.1016/0038-1098(69)90715-7
61 Lin C. , Cheng W. , Chai G. , Zhang H. . Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements. Phys. Chem. Chem. Phys., 2018, 20(37): 24250
https://doi.org/10.1039/C8CP04069A
62 Zhang W. , Wu Q. , V. Yazyev O. , Weng H. , Guo Z. , D. Cheng W. , L. Chai G. . Topological phase transitions driven by strain in monolayer tellurium. Phys. Rev. B, 2018, 98(11): 115411
https://doi.org/10.1103/PhysRevB.98.115411
63 Tong L. , Y. Huang X. , Wang P. , Ye L. , Peng M. , C. An L. , D. Sun Q. , Zhang Y. , M. Yang G. , Li Z. , Zhong F. , Wang F. , X. Wang Y. , Motlag M. , Z. Wu W. , J. Cheng G. , D. Hu W. . Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun., 2020, 11(1): 2308
https://doi.org/10.1038/s41467-020-16125-8
64 Jnawali G. , Xiang Y. , M. Linser S. , A. Shojaei I. , Wang R. , Qiu G. , Lian C. , M. Wong B. , Wu W. , D. Ye P. , Leng Y. , E. Jackson H. , M. Smith L. . Ultrafast photoinduced band splitting and carrier dynamics in chiral tellurium nanosheets. Nat. Commun., 2020, 11(1): 3991
https://doi.org/10.1038/s41467-020-17766-5
65 Wu W. , Qiu G. , Wang Y. , Wang R. , Ye P. . Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev., 2018, 47(19): 7203
https://doi.org/10.1039/C8CS00598B
66 Shi Z. , Cao R. , Khan K. , K. Tareen A. , Liu X. , Liang W. , Zhang Y. , Ma C. , Guo Z. , Luo X. , Zhang H. . Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett., 2020, 12(1): 99
https://doi.org/10.1007/s40820-020-00427-z
67 Yan Z. , Yang H. , Yang Z. , Ji C. , Zhang G. , Tu Y. , Du G. , Cai S. , Lin S. . Emerging two-dimensional tellurene and tellurides for broadband photodetectors. Small, 2022, 18(20): 2200016
https://doi.org/10.1002/smll.202200016
68 Qiu G. , Charnas A. , Niu C. , X. Wang Y. , Z. Wu W. , D. Ye P. . The resurrection of tellurium as an elemental two-dimensional semiconductor. npj 2D Mater. Appl., 2022, 6(1): 17
https://doi.org/10.1038/s41699-022-00293-w
69 Zhu Z. , Cai X. , Yi S. , Chen J. , Dai Y. , Niu C. , Guo Z. , Xie M. , Liu F. , H. Cho J. , Jia Y. , Zhang Z. . Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett., 2017, 119(10): 106101
https://doi.org/10.1103/PhysRevLett.119.106101
70 Wu B. , Liu X. , Yin J. , Lee H. . Bulk β-Te to few layered β-tellurenes: Indirect to direct band-gap transitions showing semiconducting property. Mater. Res. Express, 2017, 4(9): 095902
https://doi.org/10.1088/2053-1591/aa8ae3
71 Amani M. , L. Tan C. , Zhang G. , S. Zhao C. , Bullock J. , H. Song X. , Kim H. , R. Shrestha V. , Gao Y. , B. Crozier K. , Scott M. , Javey A. . Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 2018, 12(7): 7253
https://doi.org/10.1021/acsnano.8b03424
72 He Z. , Yang Y. , W. Liu J. , H. Yu S. . Emerging tellurium nanostructures: Controllable synthesis and their applications. Chem. Soc. Rev., 2017, 46(10): 2732
https://doi.org/10.1039/C7CS00013H
73 S. Qiao J. , H. Pan Y. , Yang F. , Wang C. , Chai Y. , Ji W. . Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. (Beijing), 2018, 63(3): 159
https://doi.org/10.1016/j.scib.2018.01.010
74 Y. Liu Y. , Z. Wu W. , A. III Goddard W. . Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc., 2018, 140(2): 550
https://doi.org/10.1021/jacs.7b09964
75 Peng M. , Z. Xie R. , Wang Z. , Wang P. , Wang F. , N. Ge H. , Wang Y. , Zhong F. , S. Wu P. , F. Ye J. , Li Q. , L. Zhang L. , Ge X. , Ye Y. , C. Lei Y. , Jiang W. , G. Hu Z. , Wu F. , H. Zhou X. , S. Miao J. , L. Wang J. , G. Yan H. , X. Shan C. , N. Dai J. , Q. Chen C. , S. Chen X. , Lu W. , D. Hu W. . Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv., 2021, 7(16): eabf7358
https://doi.org/10.1126/sciadv.abf7358
76 Han X. , M. Stewart H. , A. Shevlin S. , R. Catlow C. , X. Guo Z. . Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett., 2014, 14(8): 4607
https://doi.org/10.1021/nl501658d
77 Morgan Stewart H. , A. Shevlin S. , R. A. Catlow C. , X. Guo Z. . Compressive straining of bilayer phosphorene leads to extraordinary electron mobility at a new conduction band edge. Nano Lett., 2015, 15(3): 2006
https://doi.org/10.1021/nl504861w
78 Zhang S. , Li C. , Xiao Guo Z. , H. Cho J. , S. Su W. , Jia Y. . Magnetic evolution and anomalous Wilson transition in diagonal phosphorene nanoribbons driven by strain. Nanotechnology, 2015, 26(29): 295402
https://doi.org/10.1088/0957-4484/26/29/295402
79 Zhu Z.Cai C.Niu C.Wang C.Sun Q.Han X.Guo Z.Jia Y., Tellurene-a monolayer of tellurium from first-principles prediction, arXiv: 1605.03253v1 (2016)
80 L. Zhu Z. , L. Cai X. , H. Yi S. , L. Chen J. , W. Dai Y. , Y. Niu C. , X. Guo Z. , H. Xie M. , Liu F. , H. Cho J. , Jia Y. , Y. Zhang Z. . Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett., 2017, 119(10): 106101
https://doi.org/10.1103/PhysRevLett.119.106101
81 Wang J. , Z. Jiang C. , Q. Li W. , H. Xiao X. . Anisotropic low-dimensional materials for polarization-sensitive photodetectors: From materials to devices. Adv. Opt. Mater., 2022, 10(6): 2102436
https://doi.org/10.1002/adom.202102436
82 Li X. , Y. Liu H. , M. Ke C. , Q. Tang W. , Y. Liu M. , H. Huang F. , P. Wu Y. , M. Wu Z. , Y. Kang J. . Review of anisotropic 2D materials: Controlled growth, optical anisotropy modulation, and photonic applications. Laser Photonics Rev., 2021, 15(12): 2100322
https://doi.org/10.1002/lpor.202100322
83 L. Zhao J. , T. Ma D. , Wang C. , N. Guo Z. , Zhang B. , Q. Li J. , H. Nie G. , Xie N. , Zhang H. . Recent advances in anisotropic two-dimensional materials and device applications. Nano Res., 2021, 14(4): 897
https://doi.org/10.1007/s12274-020-3018-z
84 D. Xian L. , P. Paz A. , Bianco E. , M. Ajayan P. , Rubio A. . Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater., 2017, 4(4): 041003
https://doi.org/10.1088/2053-1583/aa8418
85 C. Nomura K. . Optical activity in tellurium. Phys. Rev. Lett., 1960, 5(11): 500
https://doi.org/10.1103/PhysRevLett.5.500
86 M. Asnin V.A. Bakun A.M. Danishevskii A.L. Ivchenko E.E. Pikus G.A. Rogachev A., “Circular” photogalvanic effect in optically active crystals, Solid State Commun. 30(9), 565 (1979)
87 Furukawa T. , Shimokawa Y. , Kobayashi K. , Itou T. . Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun., 2017, 8(1): 954
https://doi.org/10.1038/s41467-017-01093-3
88 Calavalle F. , Suárez-Rodríguez M. , Martín-García B. , Johansson A. , C. Vaz D. , Yang H. , V. Maznichenko I. , Ostanin S. , Mateo-Alonso A. , Chuvilin A. , Mertig I. , Gobbi M. , Casanova F. , E. Hueso L. . Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater., 2022, 21(5): 526
https://doi.org/10.1038/s41563-022-01211-7
89 A. Agapito L. , Kioussis N. , A. Goddard W. , P. Ong N. . Novel family of chiral-based topological insulators: Elemental tellurium under strain. Phys. Rev. Lett., 2013, 110(17): 176401
https://doi.org/10.1103/PhysRevLett.110.176401
90 X. Xue X. , X. Feng Y. , Liao L. , J. Chen Q. , Wang D. , M. Tang L. , Chen K. . Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J. Phys.: Condens. Matter, 2018, 30(12): 125001
https://doi.org/10.1088/1361-648X/aaaea1
91 J. Kwack Y. , T. T. Can T. , S. Choi W. . Bottom-up water-based solution synthesis for a large MoS2 atomic layer for thin-film transistor applications. npj 2D Mater. Appl., 2021, 5(1): 84
https://doi.org/10.1038/s41699-021-00264-7
92 S. Sokolikova M. , C. Sherrell P. , Palczynski P. , L. Bemmer V. , Mattevi C. . Direct solution-phase synthesis of 1T′ WSe2 nanosheets. Nat. Commun., 2019, 10(1): 712
https://doi.org/10.1038/s41467-019-08594-3
93 Sun Y. , Wang Y. , Sun D. , R. Carvalho B. , G. Read C. , Lee C. , Lin Z. , Fujisawa K. , A. Robinson J. , H. Crespi V. , Terrones M. , E. Schaak R. . Low-temperature solution synthesis of few-layer 1T′-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem. Int. Ed., 2016, 55(8): 2830
https://doi.org/10.1002/anie.201510029
94 Lu Z. , Layani M. , Zhao X. , P. Tan L. , Sun T. , Fan S. , Yan Q. , Magdassi S. , H. Hng H. . Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small, 2014, 10(17): 3551
https://doi.org/10.1002/smll.201303126
95 Ding M. , Liang K. , Yu S. , Zhao X. , Ren H. , Zhu B. , Hou X. , Wang Z. , Tan P. , Huang H. , Zhang Z. , Ma X. , Xu G. , Long S. . Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv. Opt. Mater., 2022, 10(16): 2200512
https://doi.org/10.1002/adom.202200512
96 Dong Y. , Zou Y. , Song J. , Li J. , Han B. , Shan Q. , Xu L. , Xue J. , Zeng H. . An all-inkjet-printed flexible UV photodetector. Nanoscale, 2017, 9(25): 8580
https://doi.org/10.1039/C7NR00250E
97 R. Yao J. , F. Chen F. , J. Li J. , L. Du J. , Wu D. , T. Tian Y. , Zhang C. , J. Li X. , Lin P. . Mixed-dimensional Te/CdS van der Waals heterojunction for self-powered broadband photodetector. Nanotechnology, 2021, 32(41): 415201
https://doi.org/10.1088/1361-6528/ac10e6
98 L. Qin F. , Gao F. , J. Dai M. , X. Hu Y. , M. Yu M. , F. Wang L. , Feng W. , Li B. , A. Hu P. . Multilayer InSe−Te van der Waals heterostructures with an ultrahigh rectification ratio and ultrasensitive photoresponse. ACS Appl. Mater. Interfaces, 2020, 12(33): 37313
https://doi.org/10.1021/acsami.0c08461
99 M. Beladi-Mousavi S.M. Pourrahimi A.Sofer Z.Pumera M., Atomically thin 2D-arsenene by liquid-phased exfoliation: Toward selective vapor sensing, Adv. Funct. Mater. 29(5), 1807004 (2019)
100 Zhang C. , Liang M. , H. Park S. , Lin Z. , Seral-Ascaso A. , Wang L. , Pakdel A. , Ó. Coileáin C. , Boland J. , Ronan O. , McEvoy N. , Lu B. , Wang Y. , Xia Y. , N. Coleman J. , Nicolosi V. . Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy Environ. Sci., 2020, 13(7): 2124
https://doi.org/10.1039/D0EE01052A
101 Bat-Erdene M. , Batmunkh M. , J. Shearer C. , A. Tawfik S. , J. Ford M. , Yu L. , J. Sibley A. , D. Slattery A. , S. Quinton J. , T. Gibson C. , G. Shapter J. . Efficient and fast synthesis of few-layer black phosphorus via microwave-assisted liquid-phase exfoliation. Small Methods, 2017, 1(12): 1700260
https://doi.org/10.1002/smtd.201700260
102 J. Xie Z. , Y. Xing C. , C. Huang W. , J. Fan T. , J. Li Z. , L. Zhao J. , J. Xiang Y. , N. Guo Z. , Q. Li J. , G. Yang Z. , Q. Dong B. , L. Qu J. , Y. Fan D. , Zhang H. . Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater., 2018, 28(16): 1705833
https://doi.org/10.1002/adfm.201705833
103 Li X. , Colombo L. , S. Ruoff R. . Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater., 2016, 28(29): 6247
https://doi.org/10.1002/adma.201504760
104 Huang Y. , Yu K. , Li H. , Xu K. , Liang Z. , Walker D. , Ferreira P. , Fischer P. , Fan D. . Scalable fabrication of molybdenum disulfide nanostructures and their assembly. Adv. Mater., 2020, 32(43): 2003439
https://doi.org/10.1002/adma.202003439
105 B. Li X. , Wang X. , H. Hong J. , Y. Liu D. , L. Feng Q. , B. Lei Z. , H. Liu K. , Ding F. , Xu H. . Nanoassembly growth model for subdomain and grain boundary formation in 1T′ layered ReS2. Adv. Funct. Mater., 2019, 29(49): 1906385
https://doi.org/10.1002/adfm.201906385
106 Q. Huang B. , H. Lei Z. , H. Cao X. , X. Wei A. , L. Tao L. , B. Yang Y. , Liu J. , Q. Zheng Z. , Zhao Y. . High-quality two-dimensional tellurium flakes grown by high-temperature vapor deposition. J. Mater. Chem. C, 2021, 9(40): 14394
https://doi.org/10.1039/D1TC02936C
107 Zhang X. , Z. Jiang J. , A. Suleiman A. , Jin B. , Z. Hu X. , Zhou X. , Y. Zhai T. . Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoresponse. Adv. Funct. Mater., 2019, 29(49): 1906585
https://doi.org/10.1002/adfm.201906585
108 Tanaka M. , Auffray M. , Nakanotani H. , Adachi C. . Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films. Nat. Mater., 2022, 21(7): 819
https://doi.org/10.1038/s41563-022-01265-7
109 Higgins D. , T. Landers A. , Ji Y. , Nitopi S. , G. Morales-Guio C. , Wang L. , Chan K. , Hahn C. , F. Jaramillo T. . Guiding electrochemical carbon dioxide reduction toward carbonyls using Copper silver thin films with interphase miscibility. ACS Energy Lett., 2018, 3(12): 2947
https://doi.org/10.1021/acsenergylett.8b01736
110 Wang Y. , Gan L. , Chen J. , Yang R. , Zhai T. . Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull. (Beijing), 2017, 62(24): 1654
https://doi.org/10.1016/j.scib.2017.11.011
111 Apte A. , Bianco E. , Krishnamoorthy A. , Yazdi S. , Rao R. , Glavin N. , Kumazoe H. , Varshney V. , Roy A. , Shimojo F. , Ringe E. , K. Kalia R. , Nakano A. , S. Tiwari C. , Vashishta P. , Kochat V. , M. Ajayan P. . Polytypism in ultrathin tellurium. 2D Mater., 2019, 6(1): 015013
https://doi.org/10.1088/2053-1583/aae7f6
112 S. Zhao C. , Batiz H. , Yasar B. , Kim H. , B. Ji W. , C. Scott M. , C. Chrzan D. , Javey A. . Tellurium single-crystal arrays by low-temperature evaporation and crystallization. Adv. Mater., 2021, 33(37): 2100860
https://doi.org/10.1002/adma.202100860
113 T. Lu J. , J. Zhang L. , R. Ma C. , J. Huang W. , J. Ye Q. , X. Yi H. , Q. Zheng Z. , W. Yang G. , A. Liu C. , D. Yao J. . In situ integration of Te/Si 2D/3D heterojunction photodetectors toward UV-Vis-IR ultra-broadband photoelectric technologies. Nanoscale, 2022, 14(16): 6228
https://doi.org/10.1039/D1NR08134A
114 S. Wang Q. , Safdar M. , Xu K. , Mirza M. , X. Wang Z. , He J. . Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano, 2014, 8(7): 7497
https://doi.org/10.1021/nn5028104
115 Ferain I. , A. Colinge C. , P. Colinge J. . Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature, 2011, 479(7373): 310
https://doi.org/10.1038/nature10676
116 M. Waldrop M. . The chips are down for Moore’s law. Nature, 2016, 530(7589): 144
https://doi.org/10.1038/530144a
117 Yang P. , J. Zha J. , Y. Gao G. , Zheng L. , X. Huang H. , P. Xia Y. , C. Xu S. , F. Xiong T. , M. Zhang Z. , B. Yang Z. , Chen Y. , K. Ki D. , J. Liou J. , G. Liao W. , L. Tan C. . Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nano-Micro Lett., 2022, 14(1): 109
https://doi.org/10.1007/s40820-022-00852-2
118 K. Qin J. , Y. Liao P. , Si M. , Gao S. , Qiu G. , Jian J. , Wang Q. , Q. Zhang S. , Huang S. , Charnas A. , Wang Y. , J. Kim M. , Wu W. , Xu X. , Y. Wang H. , Yang L. , Khin Yap Y. , D. Ye P. . Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron., 2020, 3(3): 141
https://doi.org/10.1038/s41928-020-0365-4
119 Kim T. , H. Choi C. , Byeon P. , Lee M. , Song A. , B. Chung K. , Han S. , Y. Chung S. , S. Park K. , K. Jeong J. . Growth of high-quality semiconducting tellurium films for high-performance p-channel field-effect transistors with wafer-scale uniformity. npj 2D Mater. Appl., 2022, 6(1): 4
https://doi.org/10.1038/s41699-021-00280-7
120 Liu Y. , Guo J. , B. Zhu E. , Liao L. , J. Lee S. , N. Ding M. , Shakir I. , Gambin V. , Huang Y. , F. Duan X. . Approaching the schottky-mott limit in van der waals metal-semiconductor junctions. Nature, 2018, 557(7707): 696
https://doi.org/10.1038/s41586-018-0129-8
121 Song S. , Sim Y. , Y. Kim S. , H. Kim J. , Oh I. , Na W. , H. Lee D. , Wang J. , Yan S. , Liu Y. , Kwak J. , H. Chen J. , Cheong H. , W. Yoo J. , Lee Z. , Y. Kwon S. . Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky−Mott limit. Nat. Electron., 2020, 3(4): 207
https://doi.org/10.1038/s41928-020-0396-x
122 C. Shen P. , Su C. , X. Lin Y. , S. Chou A. , C. Cheng C. , H. Park J. , H. Chiu M. , Y. Lu A. , L. Tang H. , M. Tavakoli M. , Pitner G. , Ji X. , Y. Cai Z. , N. Mao N. , T. Wang J. , C. Tung V. , Li J. , Bokor J. , Zettl A. , I. Wu C. , Palacios T. , J. Li L. , Kong J. . Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593(7858): 211
https://doi.org/10.1038/s41586-021-03472-9
123 Wu M. , Xiao Y. , Zeng Y. , Zhou Y. , Zeng X. , Zhang L. , Liao W. . Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat, 2021, 3(4): 362
https://doi.org/10.1002/inf2.12161
124 K. Zhang X. , Kang Z. , Gao L. , S. Liu B. , H. Yu H. , L. Liao Q. , Zhang Z. , Zhang Y. . Molecule-upgraded van der waals contacts for Schottky-barrier-free electronics. Adv. Mater., 2021, 33(45): 2104935
https://doi.org/10.1002/adma.202104935
125 Y. Liu Y. , Stradins P. , H. Wei S. . Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv., 2016, 2(4): e1600069
https://doi.org/10.1126/sciadv.1600069
126 Wang Y. , Yuan H. , Li Z. , Yang J. . Schottky and ohmic contacts at α-tellurene/2D metal interfaces. ACS Appl. Electron. Mater., 2022, 4(3): 1082
https://doi.org/10.1021/acsaelm.1c01221
127 K. Zhang X. , H. Yu H. , H. Tang W. , F. Wei X. , Gao L. , Y. Hong M. , L. Liao Q. , Kang Z. , Zhang Z. , Zhang Y. . All-van-der-Waals barrier-free contacts for high-mobility transistors. Adv. Mater., 2022, 34(34): 2202345
https://doi.org/10.1002/adma.202202345
128 Jiang W. , D. Wang X. , Chen Y. , Q. Wu S. , M. Wu B. , Yang X. , Lin T. , Shen H. , J. Meng X. , Wu X. , H. Chu J. , L. Wang J. . End-bonded contacts of tellurium transistors. ACS Appl. Mater. Interfaces, 2021, 13(6): 7766
https://doi.org/10.1021/acsami.0c21675
129 A. Nguyen D. , Y. Park D. , Lee J. , T. Duong N. , Park C. , H. Nguyen D. , S. Le T. , Suh D. , Yang H. , S. Jeong M. . Patterning of type-II Dirac semimetal PtTe2 for optimized interface of tellurene optoelectronic device. Nano Energy, 2021, 86: 106049
https://doi.org/10.1016/j.nanoen.2021.106049
130 L. Ma W. , Q. Gao Y. , Y. Shang L. , Zhou W. , J. Yao N. , Jiang L. , X. Qiu Q. , B. Li J. , Shi Y. , G. Hu Z. , M. Huang Z. . Ultrabroadband tellurium photoelectric detector from visible to millimeter wave. Adv. Sci. (Weinh.), 2022, 9(5): 2103873
https://doi.org/10.1002/advs.202103873
131 Q. Lin S. , Li W. , W. Chen Z. , W. Shen J. , H. Ge B. , Z. Pei Y. . Tellurium as a high-performance elemental thermoelectric. Nat. Commun., 2016, 7(1): 10287
https://doi.org/10.1038/ncomms10287
132 Qiu G. , Huang S. , Segovia M. , K. Venuthurumilli P. , Wang Y. , Wu W. , Xu X. , D. Ye P. . Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett., 2019, 19(3): 1955
https://doi.org/10.1021/acs.nanolett.8b05144
133 P. Sun Z. , Martinez A. , Wang F. . Optical modulators with 2D layered materials. Nat. Photonics, 2016, 10(4): 227
https://doi.org/10.1038/nphoton.2016.15
134 Deckoff-Jones S. , X. Wang Y. , T. Lin H. , Z. Wu W. , J. Hu J. . Tellurene: A multifunctional material for midinfrared optoelectronics. ACS Photonics, 2019, 6(7): 1632
https://doi.org/10.1021/acsphotonics.9b00694
135 T. Lin H. , Song Y. , Z. Huang Y. , Kita D. , Deckoff-Jones S. , Q. Wang K. , Li L. , Y. Li J. , Y. Zheng H. , Q. Luo Z. , Z. Wang H. , Novak S. , Yadav A. , C. Huang C. , J. Shiue R. , Englund D. , Gu T. , Hewak D. , Richardson K. , Kong J. , J. Hu J. . Chalcogenide glass-on-graphene photonics. Nat. Photonics, 2017, 11(12): 798
https://doi.org/10.1038/s41566-017-0033-z
136 Ma Z. , Kikunaga K. , Wang H. , Sun S. , Amin R. , Maiti R. , H. Tahersima M. , Dalir H. , Miscuglio M. , J. Sorger V. . Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics, 2020, 7(4): 932
https://doi.org/10.1021/acsphotonics.9b01452
137 Y. Lan H. , H. Hsieh Y. , Y. Chiao Z. , Jariwala D. , H. Shih M. , J. Yen T. , Hess O. , J. Lu Y. . Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity. Nano Lett., 2021, 21(7): 3083
https://doi.org/10.1021/acs.nanolett.1c00271
138 Castilla S. , Vangelidis I. , V. Pusapati V. , Goldstein J. , Autore M. , Slipchenko T. , Rajendran K. , Kim S. , Watanabe K. , Taniguchi T. , Martin-Moreno L. , Englund D. , J. Tielrooij K. , Hillenbrand R. , Lidorikis E. , H. L. Koppens F. . Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun., 2020, 11(1): 4872
https://doi.org/10.1038/s41467-020-18544-z
139 Zhang Y. , Zhang F. , M. Wu L. , P. Zhang Y. , C. Huang W. , F. Tang Y. , P. Hu L. , Huang P. , W. Zhang X. , Zhang H. . Van der Waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small, 2019, 15(47): 1903233
https://doi.org/10.1002/smll.201903233
140 Zhao Q. , Gao F. , Chen H. , Gao W. , Xia M. , Pan Y. , Shi H. , Su S. , Fang X. , Li J. . High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe2 van der Waals heterojunction with strong interlayer transition. Mater. Horiz., 2021, 8(11): 3113
https://doi.org/10.1039/D1MH01287H
141 Yao J.Chen F.Li J.Du J.Wu D.Tian Y.Zhang C.Yang J.Li X.Lin P., A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS2 van der Waals heterojunction, J. Mater. Chem. C 9(38), 13123 (2021)
142 Peng M. , Y. Yu Y. , Wang Z. , Fu X. , Gu Y. , Wang Y. , Zhang K. , H. Zhang Z. , Huang M. , Z. Cui Z. , Zhong F. , S. Wu P. , F. Ye J. , F. Xu T. , Li Q. , Wang P. , Y. Yue F. , Wu F. , N. Dai J. , Q. Chen C. , D. Hu W. . Room-temperature blackbody-sensitive and fast infrared photodetectors based on 2D tellurium/graphene van der Waals heterojunction. ACS Photonics, 2022, 9(5): 1775
https://doi.org/10.1021/acsphotonics.2c00246
143 Liu Y. , O. Weiss N. , D. Duan X. , C. Cheng H. , Huang Y. , F. Duan X. . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
https://doi.org/10.1038/natrevmats.2016.42
144 Y. Lee H. , Kim S. . Nanowires for 2D material-based photonic and optoelectronic devices. Nanophotonics, 2022, 11(11): 2571
https://doi.org/10.1515/nanoph-2021-0800
145 Z. Wu J. , Gong M. . Nanohybrid photodetectors. Adv. Photon. Res., 2021, 2(7): 2100015
https://doi.org/10.1002/adpr.202100015
146 Zheng T.Yang M.Sun Y.Han L.Pan Y.Zhao Q.Zheng Z.Huo N.Gao W.Li J., A solution-fabricated tellurium/silicon mixed-dimensional van der Waals heterojunction for self-powered photodetectors, J. Mater. Chem. C 10(18), 7283 (2022)
147 Cao X. , Lei Z. , Huang B. , Wei A. , Tao L. , Yang Y. , Zheng Z. , Feng X. , Li J. , Zhao Y. . Non-layered Te/In2S3 tunneling heterojunctions with ultrahigh photoresponsivity and fast photoresponse. Small, 2022, 18(18): 2200445
https://doi.org/10.1002/smll.202200445
148 Han L.Yang M.Wen P.Gao W.Huo N.Li J., A high performance self-powered photodetector based on a 1D Te-2D WS2 mixed-dimensional heterostructure, Nanoscale Adv. 3(9), 2657 (2021)
149 J. Tao J. , Jiang J. , N. Zhao S. , Zhang Y. , X. Li X. , Fang X. , Wang P. , Hu W. , H. Lee Y. , L. Lu H. , W. Zhang D. . Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals p−n heterojunction for high-performance phototransistor. ACS Nano, 2021, 15(2): 3241
https://doi.org/10.1021/acsnano.0c09912
150 Wang W. , Meng Y. , Wang W. , Zhang Z. , Xie P. , Lai Z. , Bu X. , Li Y. , Liu C. , Yang Z. , Yip S. , C. Ho J. . Highly efficient full van der Waals 1D p-Te/2D n-Bi2O2Se heterodiodes with nanoscale ultra-photosensitive channels. Adv. Funct. Mater., 2022, 32(30): 2203003
https://doi.org/10.1002/adfm.202203003
151 Zhao D. , Chen Y. , Jiang W. , Wang X. , Liu J. , Huang X. , Han S. , Lin T. , Shen H. , Wang X. , Hu W. , Meng X. , Chu J. , Wang J. . Gate-tunable photodiodes based on mixed-dimensional Te/MoTe2 van der Waals heterojunctions. Adv. Electron. Mater., 2021, 7(5): 2001066
https://doi.org/10.1002/aelm.202001066
152 Zhang X. , Yang Y. , Li Z. , Liu X. , Zhang C. , Peng S. , Han J. , Zhou H. , Gou J. , Xiu F. , Wang J. . Weyl semiconductor Te/Sb2Se3 heterostructure for broadband photodetection and its binary photoresponse by C60 as charge-regulation medium. Adv. Opt. Mater., 2021, 9(21): 2101256
https://doi.org/10.1002/adom.202101256
153 Naqi M. , H. Choi K. , Cho Y. , Y. Rho H. , Cho H. , Pujar P. , liu N. , S. Kim H. , Y. Choi J. , Kim S. . Flexible platform oriented: Unipolar-type hybrid dual-channel scalable field-effect phototransistors array based on tellurium nanowires and tellurium-film with highly linear photoresponsivity. Adv. Electron. Mater., 2022, 8(7): 2101331
https://doi.org/10.1002/aelm.202101331
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed