Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (3): 31303   https://doi.org/10.1007/s11467-022-1239-1
  本期目录
Quantum dynamics studies on the non-adiabatic effects of H + LiD reaction
Yuwen Bai, Zijiang Yang, Bayaer Buren, Ye Mao, Maodu Chen()
Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
 全文: PDF(3403 KB)   HTML
Abstract

After the Big Bang, chemical reactions of hydrogen with LiH and its isotopic variants played an important role in the late stage of recombination. Moreover, these reactions have attracted the attention of experts in the field of molecular dynamics because of its simple structure. Electronically non-adiabatic effects play a key role in many chemical reactions, while the related studies in LiH2 reactive system and its isotopic variants are not enough, so the microscopic mechanism of this system has not been fully explored. In this work, the microscopic mechanism of H + LiD reaction are performed by comparing both the adiabatic and non-adiabatic results to study the non-adiabatic effects. The reactivity of R1 (H + LiD → Li + HD) channel is inhibited, while that of R2 (H + LiD → D + LiH) channel is enhanced when the non-adiabatic couplings are considered. For R1 channel, a direct stripping process dominates this channel and the main reaction mechanism is not influenced by the non-adiabatic effects. For R2 channel, at relatively low collision energy, the dominance changes from a rebound process to the complex-forming mechanism when the non-adiabatic effects are considered, whereas the rebound collision approach still dominates the reaction at relatively high collision energy in both calculations. The presented results provide a basis for further detailed study on this importantly astrophysical reaction system.

Key wordsnon-adiabatic effects    quantum dynamics    time-dependent wave packet    astrophysical reaction
收稿日期: 2022-10-20      出版日期: 2023-02-03
Corresponding Author(s): Maodu Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(3): 31303.
Yuwen Bai, Zijiang Yang, Bayaer Buren, Ye Mao, Maodu Chen. Quantum dynamics studies on the non-adiabatic effects of H + LiD reaction. Front. Phys. , 2023, 18(3): 31303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1239-1
https://academic.hep.com.cn/fop/CN/Y2023/V18/I3/31303
Parameters Values
R R [0.1, 30.0]
NR = 299 (149 for interaction region)
r r [0.1, 20.0]
Nr = 150 (10 for asymptotic region)
θ Nθ = 200 (40 for asymptotic region)
Damping function for R Ra = 20.0, Rb = 30.0, CR = 0.08
Damping function for r ra = 14.0, rb = 20.0, Cr = 0.08
Initial wave packet R0 = 15.0, δ = 0.5 eV, E0 = 0.3 eV
Total propagation time 40000(non-adiabatic), 30000(adiabatic)
Time step Δt = 5
Projection plane Rf = 9.0 for Li + HD,
Rf = 13.0 for D + LiH
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 Bodo E., A. Gianturco F., Martinazzo R.. The gas-phase lithium chemistry in the early universe: Elementary processes, interaction forces and quantum dynamics. Phys. Rep., 2003, 384(3): 85
https://doi.org/10.1016/S0370-1573(03)00243-6
2 Lepp S., Stancil P., Dalgarno A.. Atomic and molecular processes in the early universe. J. Phys. At. Mol. Opt. Phys., 2002, 35(10): 201
https://doi.org/10.1088/0953-4075/35/10/201
3 Zhang Y., Wang N., Li Q., Ou L., Tian J., Liu M., Zhao K., Wu X., Li Z.. Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys., 2020, 15(5): 54301
https://doi.org/10.1007/s11467-020-0961-9
4 He Q., D. Reid M., Opanchuk B., Polkinghorne R., E. Rosales-Zárate L., D. Drummond P.. Quantum dynamics in ultracold atomic physics. Front. Phys., 2012, 7(1): 16
https://doi.org/10.1007/s11467-011-0232-x
5 Zheng H., Gu Q.. Dynamics of Bose−Einstein condensates in a one-dimensional optical lattice with double-well potential. Front. Phys., 2013, 8(4): 375
https://doi.org/10.1007/s11467-013-0321-0
6 Wu J., Qi R., Ji A., Liu W.. Quantum tunneling of ultracold atoms in optical traps. Front. Phys., 2014, 9(2): 137
https://doi.org/10.1007/s11467-013-0359-z
7 Lepp S., M. Shull J.. Molecules in the early universe. Astrophys. J., 1984, 280: 465
https://doi.org/10.1086/162013
8 J. Clarke N., Sironi M., Raimondi M., Kumar S., A. Gianturco F., Buonomo E., L. Cooper D.. Classical and quantum dynamics on the collinear potential energy surface for the reaction of Li with H2. Chem. Phys., 1998, 233(1): 9
https://doi.org/10.1016/S0301-0104(98)00131-1
9 Padmanaban R., Mahapatra S.. Time-dependent wave packet dynamics of the H + HLi reactive scattering. J. Chem. Phys., 2002, 117(14): 6469
https://doi.org/10.1063/1.1504702
10 Roy T., Mahapatra S.. Quantum dynamics of H + LiH reaction and its isotopic variants. J. Chem. Phys., 2012, 136(17): 174313
https://doi.org/10.1063/1.4707144
11 W. Huran A., González-Sánchez L., Gomez-Carrasco S., Aldegunde J.. A quantum mechanical study of the kj and k′−j′ vector correlations for the H + LiH → Li + H2 reaction. J. Phys. Chem. A, 2017, 121(8): 1535
https://doi.org/10.1021/acs.jpca.6b10094
12 J. Martínez T.. Ab initio molecular dynamics around a conical intersection: Li(2p) + H2. Chem. Phys. Lett., 1997, 272(3−4): 139
https://doi.org/10.1016/S0009-2614(97)88000-1
13 G. Diniz L., Alijah A., R. Mohallem J.. Benchmark linelists and radiative cooling functions for LiH isotopologues. Astrophys. J. Suppl. Ser., 2018, 235(2): 35
https://doi.org/10.3847/1538-4365/aab431
14 Song J., Zhu Z.. Dynamics studies of the Li(2S) + H2(X1Σg+) → LiH(X1Σ+) + H(2S) reaction by time-dependent wave packet and quasi-classical trajectory methods. Comput. Theor. Chem., 2020, 1173: 112703
https://doi.org/10.1016/j.comptc.2020.112703
15 He D., Yuan J., Chen M.. Influence of rovibrational excitation on the non-diabatic state-to-state dynamics for the Li(2p) + H2 → LiH + H reaction. Sci. Rep., 2017, 7(1): 3084
https://doi.org/10.1038/s41598-017-03274-y
16 Chen J., Lin K.. Influence of vibrational excitation on the reaction Li(22PJ) + H2(ν = 1) → LiH(X1Σ+) + H. J. Chem. Phys., 2003, 119(17): 8785
https://doi.org/10.1063/1.1620997
17 S. Lee H., S. Lee Y., Jeung G.. Potential energy surfaces for LiH2 and photochemical reactions Li* + H2 ↔ LiH + H. J. Phys. Chem. A, 1999, 103(50): 11080
https://doi.org/10.1021/jp9921295
18 He X., Wu H., Zhang P., Zhang Y.. Quantum state-to-state dynamics of the H + LiH → H2 + Li reaction. J. Phys. Chem. A, 2015, 119(33): 8912
https://doi.org/10.1021/acs.jpca.5b05178
19 Padmanaban R., Mahapatra S.. Resonances in three-dimensional H + HLi scattering: A time-dependent wave packet dynamical study. J. Chem. Phys., 2004, 120(4): 1746
https://doi.org/10.1063/1.1634559
20 Gómez-Carrasco S., González-Sánchez L., Bulut N., Roncero O., Bañares L., F. Castillo J.. State-to-state quantum wave packet dynamics of the LiH + H reaction on two ab initio potential energy surfaces. Astrophys. J., 2014, 784(1): 55
https://doi.org/10.1088/0004-637X/784/1/55
21 He D., Li W., Wang M.. A study on the non-adiabatic dynamics of the Li(2p) + H2 → Li(2s) + H2 quenching reaction calculated by time-dependent wavepacket method. Chem. Phys. Lett., 2021, 780: 138910
https://doi.org/10.1016/j.cplett.2021.138910
22 Fu L., Wang D., Huang X.. Accurate potential energy surfaces for the first two lowest electronic states of the Li(2p) + H2 reaction. RSC Adv., 2018, 8(28): 15595
https://doi.org/10.1039/C8RA02504E
23 Born M.Heisenberg W., Zur quantentheorie der molekeln, in: Original Scientific Papers Wissenschaftliche Originalarbeiten, Springer, 1985, pp 216–246
24 V. Makhov D., J. Glover W., J. Martinez T., V. Shalashilin D.. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J. Chem. Phys., 2014, 141(5): 054110
https://doi.org/10.1063/1.4891530
25 F. Curchod B., J. Penfold T., Rothlisberger U., Tavernelli I.. Nonadiabatic ab initio molecular dynamics using linear-response time-dependent density functional theory. Cent. Eur. J. Phys., 2013, 11: 1059
https://doi.org/10.2478/s11534-013-0321-2
26 Betz V., D. Goddard B.. Nonadiabatic transitions through tilted avoided crossings. SIAM J. Sci. Comput., 2011, 33(5): 2247
https://doi.org/10.1137/100802347
27 Guan Y., Xie C., R. Yarkony D., Guo H.. High-fidelity first principles nonadiabaticity: Diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics. Phys. Chem. Chem. Phys., 2021, 23(44): 24962
https://doi.org/10.1039/D1CP03008F
28 Bernardi F., Olivucci M., A. Robb M.. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev., 1996, 25(5): 321
https://doi.org/10.1039/cs9962500321
29 Xie C., L. Malbon C., Guo H., R. Yarkony D.. Up to a sign. The insidious effects of energetically inaccessible conical intersections on unimolecular reactions. Acc. Chem. Res., 2019, 52(2): 501
https://doi.org/10.1021/acs.accounts.8b00571
30 Guo H., R. Yarkony D.. Accurate nonadiabatic dynamics. Phys. Chem. Chem. Phys., 2016, 18(38): 26335
https://doi.org/10.1039/C6CP05553B
31 Xie C., R. Yarkony D., Guo H.. Nonadiabatic tunneling via conical intersections and the role of the geometric phase. Phys. Rev. A, 2017, 95(2): 022104
https://doi.org/10.1103/PhysRevA.95.022104
32 Mai S., Marquetand P., González L.. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem., 2015, 115(18): 1215
https://doi.org/10.1002/qua.24891
33 K. Kendrick B., Hazra J., Balakrishnan N.. Geometric phase effects in the ultracold H + H2 reaction. J. Chem. Phys., 2016, 145(16): 164303
https://doi.org/10.1063/1.4966037
34 J. C. Varandas A., G. Yu H.. Geometric phase effects on transition-state resonances and bound vibrational states of H3 via a time-dependent wavepacket method. J. Chem. Soc. Faraday Trans., 1997, 93(5): 819
https://doi.org/10.1039/a605777b
35 Koizumi H., Sugano S.. The geometric phase in two electronic level systems. J. Chem. Phys., 1994, 101(6): 4903
https://doi.org/10.1063/1.467412
36 C. Juanes-Marcos J., C. Althorpe S., Wrede E.. Effect of the geometric phase on the dynamics of the hydrogen-exchange reaction. J. Chem. Phys., 2007, 126(4): 044317
https://doi.org/10.1063/1.2430708
37 Huang J., H. Zhang D.. An efficient way to incorporate the geometric phase in the time-dependent wave packet calculations in a diabatic representation. J. Chem. Phys., 2020, 153(14): 141102
https://doi.org/10.1063/5.0028035
38 F. E. Croft J., Hazra J., Balakrishnan N., K. Kendrick B.. Symmetry and the geometric phase in ultracold hydrogen exchange reactions. J. Chem. Phys., 2017, 147(7): 074302
https://doi.org/10.1063/1.4998226
39 Yuan D., Guan Y., Chen W., Zhao H., Yu S., Luo C., Tan Y., Xie T., Wang X., Sun Z., H. Zhang D., Yang X.. Observation of the geometric phase effect in the H + HD → H2 + D reaction. Science, 2018, 362(6420): 1289
https://doi.org/10.1126/science.aav1356
40 Xie Y., Zhao H., Wang Y., Huang Y., Wang T., Xu X., Xiao C., Sun Z., H. Zhang D., Yang X.. Quantum interference in H + HD → H2 + D between direct abstraction and roaming insertion pathways. Science, 2020, 368(6492): 767
https://doi.org/10.1126/science.abb1564
41 Wang Y., R. Yarkony D.. Conical intersection seams in spin–orbit coupled systems with an even number of electrons: A numerical study based on neural network fit surfaces. J. Chem. Phys., 2021, 155(17): 174115
https://doi.org/10.1063/5.0067660
42 P. Rakitzis T.. Transition states and spin-orbit structure. Science, 2021, 371(6532): 886
https://doi.org/10.1126/science.abg3184
43 Chen W., Wang R., Yuan D., Zhao H., Luo C., Tan Y., Li S., H. Zhang D., Wang X., Sun Z., Yang X.. Quantum interference between spin-orbit split partial waves in the F + HD → HF + D reaction. Science, 2021, 371(6532): 936
https://doi.org/10.1126/science.abf4205
44 Li J., Sajjan M., S. Kale S., Kais S.. Statistical correlation between quantum entanglement and spin–orbit coupling in crossed beam molecular dynamics. Adv. Quantum Technol., 2021, 4: 2100098
https://doi.org/10.1002/qute.202100098
45 Zimmermann T., Vaníček J.. Evaluation of the importance of spin−orbit couplings in the nonadiabatic quantum dynamics with quantum fidelity and with its efficient “on-the-fly” ab initio semiclassical approximation. J. Chem. Phys., 2012, 137: 22A516
https://doi.org/10.1063/1.4738878
46 Yang Z., Yuan J., Wang S., Chen M.. Global diabatic potential energy surfaces for the BeH2+ system and dynamics studies on the Be+(2P) + H2(X1Σg+) → BeH+(X1Σ+) + H(2S) reaction. RSC Advances, 2018, 8(40): 22823
https://doi.org/10.1039/C8RA04305A
47 Yang Z., Mao Y., Chen M.. Quantum dynamics studies of the significant intramolecular isotope effects on the nonadiabatic Be+(2P) + HD → BeH+/BeD++ D/H reaction. J. Phys. Chem. A, 2021, 125(1): 235
https://doi.org/10.1021/acs.jpca.0c09593
48 Mao Y., Yuan J., Yang Z., Chen M.. Quantum dynamics studies of isotope effects in the Mg+(3p) + HD → MgH+/MgD+ + D/H insertion reaction. Sci. Rep., 2020, 10(1): 3410
https://doi.org/10.1038/s41598-020-60033-2
49 Buren B., Mao Y., Yang Z., Chen M.. Non-adiabatic couplings induced complex-forming mechanism in H + MgH+ → Mg+ + H2 reaction. Chin. J. Chem. Phys., 2022, 35(2): 345
https://doi.org/10.1063/1674-0068/cjcp2111237
50 He D., Yuan J., Li H., Chen M.. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X1Σg+) → LiH(X1Σ+) + H reaction. Sci. Rep., 2016, 6: 25083
https://doi.org/10.1038/srep25083
51 D. Coutinho N., O. Sanches-Neto F., H. Carvalho-Silva V., C. B. Oliveira H., A. Ribeiro L., Aquilanti V.. Kinetics of the OH + HCl → H2O + Cl reaction: Rate determining roles of stereodynamics and roaming and of quantum tunneling. J. Comput. Chem., 2018, 39(30): 2508
https://doi.org/10.1002/jcc.25597
52 D. Coutinho N., H. Silva V., C. de Oliveira H., J. Camargo A., C. Mundim K., Aquilanti V.. Stereodynamical origin of anti-arrhenius kinetics: negative activation energy and roaming for a four-atom reaction. J. Phys. Chem. Lett., 2015, 6(9): 1553
https://doi.org/10.1021/acs.jpclett.5b00384
53 Tsai P., Che D., Nakamura M., Lin K., Kasai T.. Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Phys. Chem. Chem. Phys., 2011, 13(4): 1419
https://doi.org/10.1039/C0CP01089H
54 Zhao B., Han S., L. Malbon C., Manthe U., Yarkony D., Guo H.. Full-dimensional quantum stereodynamics of the nonadiabatic quenching of OH(A2Σ+) by H2. Nat. Chem., 2021, 13(9): 909
https://doi.org/10.1038/s41557-021-00730-1
55 Buren B., Chen M.. Stereodynamics-controlled product branching in the nonadiabatic H + NaD → Na(3s, 3p) + HD reaction at low temperatures. J. Phys. Chem. A, 2022, 126(16): 2453
https://doi.org/10.1021/acs.jpca.2c00114
56 Sun Z., Y. Lee S., Guo H., H. Zhang D.. Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations. J. Chem. Phys., 2009, 130(17): 174102
https://doi.org/10.1063/1.3126363
57 Yao C., Zhang P., Duan Z., Zhao G.. Influence of collision energy on the dynamics of the reaction H(2S) + NH(X3Σ−) → N(4S) + H2(X1Σg+) by the state-to-state quantum mechanical study. Theor. Chem. Acc., 2014, 133(6): 1489
https://doi.org/10.1007/s00214-014-1489-2
58 Song H., Y. Lee S., Sun Z., Lu Y.. Time-dependent wave packet state-to-state dynamics of H/D + HCl/DCl reactions. J. Chem. Phys., 2013, 138(5): 054305
https://doi.org/10.1063/1.4790116
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed