Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (3): 33308   https://doi.org/10.1007/s11467-022-1241-7
  本期目录
Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors
Yuchen Cai1,2, Jia Yang1,2, Feng Wang1,2(), Shuhui Li1,2, Yanrong Wang1,2, Xueying Zhan1,2, Fengmei Wang1,2, Ruiqing Cheng3(), Zhenxing Wang1,2(), Jun He3
1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
 全文: PDF(5383 KB)   HTML
Abstract

Detection of solar-blind ultraviolet (SB-UV) light is important in applications like confidential communication, flame detection, and missile warning system. However, the existing SB-UV photodetectors still show low sensitivities. In this work, we demonstrate the extraordinary SB-UV detection performance of α-In2Se3 phototransistors. Benefiting from the coupled semiconductor and ferroelectricity property, the phototransistor has an ultraweak detectable power of 17.85 fW, an ultrahigh gain of 1.2 × 106, a responsivity of 2.6 × 105 A/W, a detectivity of 1.3 × 1016 Jones and an ultralow noise-equivalent-power of 4.2 × 10−20 W/Hz1/2 for 275 nm light. Its performance exceeds most other UV detectors, even including commercial photomultiplier tubes and avalanche photodiodes. It can be also implemented as an optoelectronic synapse for neuromorphic computing. A 784×300×10 artificial neural network (ANN) based on this optoelectronic synapse is constructed and demonstrated with a high recognition accuracy and good noise-tolerance for the Fashion-MNIST dataset. These extraordinary features endow this phototransistor with the potential for constructing advanced SB-UV detectors and intelligent hardware.

Key wordssolar-blind ultraviolet detectors    α-In2Se3    optoelectronic synapse    neuromorphic computing
收稿日期: 2022-10-17      出版日期: 2023-01-11
Corresponding Author(s): Feng Wang,Ruiqing Cheng,Zhenxing Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(3): 33308.
Yuchen Cai, Jia Yang, Feng Wang, Shuhui Li, Yanrong Wang, Xueying Zhan, Fengmei Wang, Ruiqing Cheng, Zhenxing Wang, Jun He. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys. , 2023, 18(3): 33308.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1241-7
https://academic.hep.com.cn/fop/CN/Y2023/V18/I3/33308
Fig.1  
Fig.2  
Fig.3  
1 Gong M. , Liu Q. , Cook B. , Kattel B. , Wang T. , L. Chan W. , Ewing D. , Casper M. , Stramel A. , Z. Wu J. . All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano, 2017, 11(4): 4114
https://doi.org/10.1021/acsnano.7b00805
2 Xu X.Chen J.Cai S.Long Z.Zhang Y.Su L.He S.Tang C.Liu P.Peng H.Fang X., A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector, Adv. Mater. 30(43), 1803165 (2018)
3 Zhang D. , Zheng W. , Lin R. , Li Y. , Huang F. . Ultrahigh EQE (15%) solar‐blind UV photovoltaic detector with organic–inorganic heterojunction via dual built‐in fields enhanced photogenerated carrier separation efficiency mechanism. Adv. Funct. Mater., 2019, 29(26): 1900935
https://doi.org/10.1002/adfm.201900935
4 N. Lin C. , J. Lu Y. , Yang X. , Z. Tian Y. , J. Gao C. , L. Sun J. , Dong L. , Zhong F. , D. Hu W. , X. Shan C. . Diamond-based all-carbon photodetectors for solar-blind imaging. Adv. Opt. Mater., 2018, 6(15): 1800068
https://doi.org/10.1002/adom.201800068
5 Yang W. , Hu K. , Teng F. , Weng J. , Zhang Y. , Fang X. . High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched Type II Se/n-Si heterojunctions. Nano Lett., 2018, 18(8): 4697
https://doi.org/10.1021/acs.nanolett.8b00988
6 Zhang Y. , Li S. , Li Z. , Liu H. , Liu X. , Chen J. , Fang X. . High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett., 2021, 21(1): 382
https://doi.org/10.1021/acs.nanolett.0c03759
7 Kumar A. , A. Khan M. , Kumar M. . Recent advances in UV photodetectors based on 2D materials: A review. J. Phys. D Appl. Phys., 2022, 55(13): 133002
https://doi.org/10.1088/1361-6463/ac33d7
8 Cao R. , Zhang Y. , Wang H. , Zeng Y. , Zhao J. , Zhang L. , Li J. , Meng F. , Shi Z. , Fan D. , Guo Z. . Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets. Nanophotonics, 2020, 9(8): 2459
https://doi.org/10.1515/nanoph-2019-0539
9 Zheng W. , Lin R. , Zhang Z. , Huang F. . Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces, 2018, 10(32): 27116
https://doi.org/10.1021/acsami.8b07189
10 Chu J. , Wang F. , Yin L. , Lei L. , Yan C. , Wang F. , Wen Y. , Wang Z. , Jiang C. , Feng L. , Xiong J. , Li Y. , He J. . High-performance ultraviolet photodetector based on a few-layered 2D NiPS3 nanosheet. Adv. Funct. Mater., 2017, 27(32): 1701342
https://doi.org/10.1002/adfm.201701342
11 Y. Kong W. , A. Wu G. , Y. Wang K. , F. Zhang T. , F. Zou Y. , D. Wang D. , B. Luo L. . Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater., 2016, 28(48): 10725
https://doi.org/10.1002/adma.201604049
12 Li S. , Zhang Y. , Yang W. , Liu H. , Fang X. . 2D perovskite Sr2Nb3O10 for high‐performance UV photodetectors. Adv. Mater., 2020, 32(7): 1905443
https://doi.org/10.1002/adma.201905443
13 K. Lubsandorzhiev B. . On the history of photomultiplier tube invention. Nucl. Instrum. Methods Phys. Res. A, 2006, 567(1): 236
https://doi.org/10.1016/j.nima.2006.05.221
14 Lafuente A. , Abanades A. , T. Leon P. , Sordo F. , M. Martinez-Val J. . Dynamic response of an accelerator driven system to accelerator beam interruptions for criticality. Nucl. Instrum. Methods Phys. Res. A, 2008, 591(2): 327
https://doi.org/10.1016/j.nima.2008.03.003
15 Su L. , Zhang Q. , Wu T. , Chen M. , Su Y. , Zhu Y. , Xiang R. , Gui X. , Tang Z. . High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction. Appl. Phys. Lett., 2014, 105(7): 072106
https://doi.org/10.1063/1.4893591
16 Nie B. , G. Hu J. , B. Luo L. , Xie C. , H. Zeng L. , Lv P. , Z. Li F. , S. Jie J. , Feng M. , Y. Wu C. , Q. Yu Y. , H. Yu S. . Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small, 2013, 9(17): 2872
https://doi.org/10.1002/smll.201203188
17 Wan X. , Xu Y. , Guo H. , Shehzad K. , Ali A. , Liu Y. , Yang J. , Dai D. , T. Lin C. , Liu L. , C. Cheng H. , Wang F. , Wang X. , Lu H. , Hu W. , Pi X. , Dan Y. , Luo J. , Hasan T. , Duan X. , Li X. , Xu J. , Yang D. , Ren T. , Yu B. . A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: Breaking the limit of silicon?. npj 2D Mater. Appl., 2017, 1(1): 4
https://doi.org/10.1038/s41699-017-0008-4
18 A. Kang M. , Kim S. , S. Jeon I. , R. Lim Y. , Y. Park C. , Song W. , S. Lee S. , Lim J. , S. An K. , Myung S. . Highly efficient and flexible photodetector based on MoS2–ZnO heterostructures. RSC Adv., 2019, 9(34): 19707
https://doi.org/10.1039/C9RA00578A
19 Li H. , Su S. , Liang C. , Huang M. , Ma X. , Yu G. , Tao H. . Ultraviolet photodetector based on the hybrid graphene/phosphor field-effect transistor. Opt. Mater., 2020, 109: 110439
https://doi.org/10.1016/j.optmat.2020.110439
20 Krishnamurthi V. , X. Low M. , Kuriakose S. , Sriram S. , Bhaskaran M. , Walia S. . Black phosphorus nanoflakes vertically stacked on MoS2 nanoflakes as heterostructures for photodetection. ACS Appl. Nano Mater., 2021, 4(7): 6928
https://doi.org/10.1021/acsanm.1c00972
21 Seo J. , H. Lee J. , Pak J. , Cho K. , K. Kim J. , Kim J. , Jang J. , Ahn H. , C. Lim S. , Chung S. , Kang K. , Lee T. . Ultrasensitive photodetection in MoS2 avalanche phototransistors. Adv. Sci. (Weinh.), 2021, 8(19): 2102437
https://doi.org/10.1002/advs.202102437
22 Adinolfi V. , H. Sargent E. . Photovoltage field-effect transistors. Nature, 2017, 542(7641): 324
https://doi.org/10.1038/nature21050
23 P. García de Arquer F. , Armin A. , Meredith P. , H. Sargent E. . Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2017, 2(3): 16100
https://doi.org/10.1038/natrevmats.2016.100
24 Feng J. , Gong C. , Gao H. , Wen W. , Gong Y. , Jiang X. , Zhang B. , Wu Y. , Wu Y. , Fu H. , Jiang L. , Zhang X. . Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron., 2018, 1(7): 404
https://doi.org/10.1038/s41928-018-0101-5
25 Gong X. , Tong M. , Xia Y. , Cai W. , S. Moon J. , Cao Y. , Yu G. , L. Shieh C. , Nilsson B. , J. Heeger A. . High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325(5948): 1665
https://doi.org/10.1126/science.1176706
26 Konstantatos G. , Badioli M. , Gaudreau L. , Osmond J. , Bernechea M. , P. Garcia de Arquer F. , Gatti F. , H. Koppens F. . Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol., 2012, 7(6): 363
https://doi.org/10.1038/nnano.2012.60
27 Guo F. , Yang B. , Yuan Y. , Xiao Z. , Dong Q. , Bi Y. , Huang J. . A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol., 2012, 7(12): 798
https://doi.org/10.1038/nnano.2012.187
28 Zhang Y. , J. Hellebusch D. , D. Bronstein N. , Ko C. , F. Ogletree D. , Salmeron M. , P. Alivisatos A. . Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. Nat. Commun., 2016, 7(1): 11924
https://doi.org/10.1038/ncomms11924
29 Yang J. , Wang F. , F. Guo J. , R. Wang Y. , X. Jiang C. , H. Li S. , C. Cai Y. , Y. Zhan X. , F. Liu X. , H. Cheng Z. , He J. , X. Wang Z. . Ultrasensitive ferroelectric semiconductor phototransistors for photon‐level detection. Adv. Funct. Mater., 2022, 32(36): 2205468
https://doi.org/10.1002/adfm.202205468
30 X. Hou Y. , Li Y. , C. Zhang Z. , Q. Li J. , H. Qi D. , D. Chen X. , J. Wang J. , W. Yao B. , X. Yu M. , B. Lu T. , Zhang J. . Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 2021, 15(1): 1497
https://doi.org/10.1021/acsnano.0c08921
31 J. Fuller E. , E. Gabaly F. , Leonard F. , Agarwal S. , J. Plimpton S. , B. Jacobs-Gedrim R. , D. James C. , J. Marinella M. , A. Talin A. . Li-ion synaptic transistor for low power analog computing. Adv. Mater., 2017, 29(4): 1604310
https://doi.org/10.1002/adma.201604310
32 Sun J. , Oh S. , Choi Y. , Seo S. , J. Oh M. , Lee M. , B. Lee W. , J. Yoo P. , H. Cho J. , H. Park J. . Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater., 2018, 28(47): 1804397
https://doi.org/10.1002/adfm.201804397
33 Luo Z. , Wang Z. , Guan Z. , Ma C. , Zhao L. , Liu C. , Sun H. , Wang H. , Lin Y. , Jin X. , Yin Y. , Li X. . High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing. Nat. Commun., 2022, 13(1): 699
https://doi.org/10.1038/s41467-022-28303-x
34 Wang S. , Liu L. , Gan L. , Chen H. , Hou X. , Ding Y. , Ma S. , W. Zhang D. , Zhou P. . Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun., 2021, 12(1): 53
https://doi.org/10.1038/s41467-020-20257-2
35 van de Burgt Y. , Lubberman E. , J. Fuller E. , T. Keene S. , C. Faria G. , Agarwal S. , J. Marinella M. , Alec Talin A. , Salleo A. . A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater., 2017, 16(4): 414
https://doi.org/10.1038/nmat4856
36 Prezioso M. , Merrikh-Bayat F. , D. Hoskins B. , C. Adam G. , K. Likharev K. , B. Strukov D. . Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521(7550): 61
https://doi.org/10.1038/nature14441
37 B. Strukov D. , S. Snider G. , R. Stewart D. , S. Williams R. . The missing memristor found. Nature, 2008, 453(7191): 80
https://doi.org/10.1038/nature06932
38 Tuma T. , Pantazi A. , Le Gallo M. , Sebastian A. , Eleftheriou E. . Stochastic phase-change neurons. Nat. Nanotechnol., 2016, 11(8): 693
https://doi.org/10.1038/nnano.2016.70
39 Y. Wang C. , J. Liang S. , Wang S. , F. Wang P. , A. Li Z. , R. Wang Z. , Y. Gao A. , Pan C. , Liu C. , Liu J. , F. Yang H. , W. Liu X. , H. Song W. , Wang C. , Cheng B. , M. Wang X. , J. Chen K. , L. Wang Z. , J. Watanabe K. , Taniguchi T. , J. Yang J. , Miao F. . Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv., 2020, 6(26): eaba6173
https://doi.org/10.1126/sciadv.aba6173
40 Ahmed T. , Tahir M. , X. Low M. , Ren Y. , A. Tawfik S. , L. H. Mayes E. , Kuriakose S. , Nawaz S. , J. S. Spencer M. , Chen H. , Bhaskaran M. , Sriram S. , Walia S. . Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater., 2021, 33(10): 2004207
https://doi.org/10.1002/adma.202004207
41 Y. Wang T. , L. Meng J. , Y. He Z. , Chen L. , Zhu H. , Q. Sun Q. , J. Ding S. , Zhou P. , W. Zhang D. . Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. (Weinh.), 2020, 7(8): 1903480
https://doi.org/10.1002/advs.201903480
42 Zhou F. , Zhou Z. , Chen J. , H. Choy T. , Wang J. , Zhang N. , Lin Z. , Yu S. , Kang J. , P. Wong H. , Chai Y. . Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol., 2019, 14(8): 776
https://doi.org/10.1038/s41565-019-0501-3
43 Wu Q. , Wang J. , Cao J. , Lu C. , Yang G. , Shi X. , Chuai X. , Gong Y. , Su Y. , Zhao Y. , Lu N. , Geng D. , Wang H. , Li L. , Liu M. . Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv. Electron. Mater., 2018, 4(12): 1800556
https://doi.org/10.1002/aelm.201800556
44 Luo P. , Liu C. , Lin J. , Duan X. , Zhang W. , Ma C. , Lv Y. , Zou X. , Liu Y. , Schwierz F. , Qin W. , Liao L. , He J. , Liu X. . Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
https://doi.org/10.1038/s41928-022-00877-w
45 Y. Yang J. , J. Yeom M. , Park Y. , Heo J. , Yoo G. . Ferroelectric α‐In2Se3 wrapped‐gate β‐Ga2O3 field‐effect transistors for dynamic threshold voltage control. Adv. Electron. Mater., 2021, 7(8): 2100306
https://doi.org/10.1002/aelm.202100306
46 Cui J. , Wang L. , Du Z. , Ying P. , Deng Y. . High thermoelectric performance of a defect in α-In2Se3-based solid solution upon substitution of Zn for In. J. Mater. Chem. C, 2015, 3(35): 9069
https://doi.org/10.1039/C5TC01977J
47 J. Wang J. , Wang F. , X. Wang Z. , H. Huang W. , Y. Yao Y. , R. Wang Y. , Yang J. , N. Li N. , Yin L. , Q. Cheng R. , Y. Zhan X. , X. Shan C. , He J. . Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Sci. Bull. (Beijing), 2021, 66(22): 2288
https://doi.org/10.1016/j.scib.2021.06.020
48 Ding W. , Zhu J. , Wang Z. , Gao Y. , Xiao D. , Gu Y. , Zhang Z. , Zhu W. . Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun., 2017, 8(1): 14956
https://doi.org/10.1038/ncomms14956
49 Zhou Y. , Wu D. , Zhu Y. , Cho Y. , He Q. , Yang X. , Herrera K. , Chu Z. , Han Y. , C. Downer M. , Peng H. , Lai K. . Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett., 2017, 17(9): 5508
https://doi.org/10.1021/acs.nanolett.7b02198
50 Xue F. , Hu W. , C. Lee K. , S. Lu L. , Zhang J. , L. Tang H. , Han A. , T. Hsu W. , Tu S. , H. Chang W. , H. Lien C. , H. He J. , Zhang Z. , J. Li L. , Zhang X. . Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater., 2018, 28(50): 1803738
https://doi.org/10.1002/adfm.201803738
51 Zheng C. , Yu L. , Zhu L. , L. Collins J. , Kim D. , Lou Y. , Xu C. , Li M. , Wei Z. , Zhang Y. , T. Edmonds M. , Li S. , Seidel J. , Zhu Y. , Z. Liu J. , X. Tang W. , S. Fuhrer M. . Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv., 2018, 4(7): eaar7720
https://doi.org/10.1126/sciadv.aar7720
52 Zhang Y. , Wang L. , Chen H. , Ma T. , Lu X. , P. Loh K. . Analog and digital mode α‐In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater., 2021, 7(12): 2100609
https://doi.org/10.1002/aelm.202100609
53 Si M. , K. Saha A. , Gao S. , Qiu G. , Qin J. , Duan Y. , Jian J. , Niu C. , Wang H. , Wu W. , K. Gupta S. , D. Ye P. . A ferroelectric semiconductor field-effect transistor. Nat. Electron., 2019, 2(12): 580
https://doi.org/10.1038/s41928-019-0338-7
54 Xue F. , He X. , Liu W. , Periyanagounder D. , Zhang C. , Chen M. , H. Lin C. , Luo L. , Yengel E. , Tung V. , D. Anthopoulos T. , J. Li L. , H. He J. , Zhang X. . Optoelectronic ferroelectric domain‐wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater., 2020, 30(52): 2004206
https://doi.org/10.1002/adfm.202004206
55 Xu K. , Jiang W. , Gao X. , Zhao Z. , Low T. , Zhu W. . Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors. Nanoscale, 2020, 12(46): 23488
https://doi.org/10.1039/D0NR06872A
56 Zhang Y. , Dai J. , Zhong X. , Zhang D. , Zhong G. , Li J. . Probing ultrafast dynamics of ferroelectrics by time-resolved pump-probe spectroscopy. Adv. Sci. (Weinh.), 2021, 8(22): 2102488
https://doi.org/10.1002/advs.202102488
57 Wang H. , Guo J. , Miao J. , Luo W. , Gu Y. , Xie R. , Wang F. , Zhang L. , Wang P. , Hu W. . Emerging single-photon detectors based on low-dimensional materials. Small, 2022, 18(5): 2103963
https://doi.org/10.1002/smll.202103963
58 Han X.Kashif R.Roland V., Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms, arXiv: 1708.07747 (2017)
[1] fop-21241-OF-wangzhenxing_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed