Multipartite entangled state is the basic resource for implementing quantum information networks and quantum computation. In this paper, we present the experimental demonstration of the eightpartite two-diamond shape cluster states for continuous variables, which consist of eight spatially separated and entangled optical modes. Eight resource squeezed states of light with classical coherence are produced by four nondegenerate optical parametric amplifiers and then they are transformed to the eight-partite two-diamond shape cluster states by a specially designed linear optical network. Since the spatially separated multipartite entangled state can be prepared off-line, it can be conveniently applied in the future quantum technology.
N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett. , 2006, 97(11): 110501 doi: 10.1103/PhysRevLett.97.110501
5
P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature , 2005, 434(7030): 169 doi: 10.1038/nature03347
6
K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J.W. Pan, Phys. Rev. Lett. , 2007, 99(12): 120503 doi: 10.1103/PhysRevLett.99.120503
7
W. Gao, P. Xu, X. Yao, O. Gühne, A. Cabello, C. Y. Lu, C. Z. Peng, Z. B. Chen, and J. W. Pan, Phys. Rev. Lett. , 2010, 104(2): 020501 doi: 10.1103/PhysRevLett.104.020501
M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, Phys. Rev. A , 2009, 79(6): 062318 doi: 10.1103/PhysRevA.79.062318
11
Y. Miwa, J. I. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. A , 2009, 80(5): 050303(R) doi: 10.1103/PhysRevA.80.050303
12
Y. Wang, X. Su, H. Shen, A. Tan, C. Xie, and K. Peng, Phys. Rev. A , 2010, 81(2): 022311 doi: 10.1103/PhysRevA.81.022311
13
R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A. Politi, J. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. Lett. , 2011, 106(24): 240504 doi: 10.1103/PhysRevLett.106.240504
14
R. Ukai, S. Yokoyama, J. I. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. Lett. , 2011, 107(25): 250501 doi: 10.1103/PhysRevLett.107.250501
15
X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett. , 2007, 98(7): 070502 doi: 10.1103/PhysRevLett.98.070502
16
M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, Phys. Rev. A , 2008, 78(1): 012301 doi: 10.1103/PhysRevA.78.012301
17
A. Tan, Y. Wang, X. Jin, X. Su, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. A , 2008, 78(1): 013828 doi: 10.1103/PhysRevA.78.013828
18
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, Phys. Rev. Lett. , 2011, 107(3): 030505 doi: 10.1103/PhysRevLett.107.030505
19
X. Su, Y. Zhao, S. Hao, X. Jia, C. Xie, and K. Peng, Opt. Lett. , 2012, 37(24): 5178 doi: 10.1364/OL.37.005178
P. van Loock, C.Weedbrook, and M. Gu, Phys. Rev. A , 2007, 76(3): 032321 doi: 10.1103/PhysRevA.76.032321
23
N. C. Menicucci, S. T. Flammia, and P. van Loock, Phys. Rev. A , 2011, 83(4): 042335 doi: 10.1103/PhysRevA.83.042335
24
Y. Wang, Y. Zheng, C. Xie, and K. Peng, IEEE J. Quantum Electron. , 2011, 47(7): 1006 doi: 10.1109/JQE.2011.2138681
25
X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett. , 2002, 88(4): 047904 doi: 10.1103/PhysRevLett.88.047904
26
Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, Opt. Express , 2010, 18(6): 6149 doi: 10.1364/OE.18.006149
27
Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, and K. Peng, Phys. Rev. A , 2000, 62(2): 023813 doi: 10.1103/PhysRevA.62.023813
28
T. Eberle, S. Steinlechner, J. Bauchrowitz, V. H?ndchen, H. Vahlbruch, M.Mehmet, H. Müller-Ebhardt, and R. Schnabel, Phys. Rev. Lett. , 2010, 104(25): 251102 doi: 10.1103/PhysRevLett.104.251102
29
Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, and K. Peng, Phys. Rev. A , 2012, 85(4): 040305(R) doi: 10.1103/PhysRevA.85.040305