Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2008, Vol. 3 Issue (3) : 250-257    https://doi.org/10.1007/s11467-008-0022-2
Concurrence vectors for entanglement of high-dimensional systems
LI You-quan, ZHU Guo-qiang
Zhejiang Institute of Modern Physics, Zhejiang University;
 Download: PDF(590 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The concurrence vectors are proposed by employing the fundamental representation of An Lie algebra, which provides a clear criterion to evaluate the entanglement of bipartite systems of arbitrary dimension. Accordingly, a state is separable if the norm of its concurrence vector vanishes. The state vectors related to SU(3) states and SO(3) states are discussed in detail. The sign situation of nonzero components of concurrence vectors of entangled bases presents a simple criterion to judge whether the whole Hilbert subspace spanned by those bases is entangled, or there exists an entanglement edge. This is illustrated in terms of the concurrence surfaces of several concrete examples.
Issue Date: 05 September 2008
 Cite this article:   
LI You-quan,ZHU Guo-qiang. Concurrence vectors for entanglement of high-dimensional systems[J]. Front. Phys. , 2008, 3(3): 250-257.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-008-0022-2
https://academic.hep.com.cn/fop/EN/Y2008/V3/I3/250
1 C. H.Bennett and D. P.Divincenzo, Nature, 2000, 404: 247.
doi: 10.1038/35005001
2 M. A.Nielsen and I. L.Chuang, Quantum Computationand Quantum Communication, Cambridge: Cambridge University Press, 2000
3 A. A.Zhukov, G. A.Maslennikov, and M. V.Chekhova, JETP Lett., 2002, 76(10): 596; arXiv: quant-ph/0305113.
doi: 10.1134/1.1541042
4 R. T.Thew, A.Acin, H.Zbinden, and N.Gisin, arXiv: quant-ph/0307122
5 R.Das, A.Mitra, V.Kumar and A.Kumar, arXiv: quantph/0307240
6 A. B.Klimov, R.Guzman, J. C.Retamal, and S.Saavedra, Phys. Rev. A, 2003, 67: 062313.
doi: 10.1103/PhysRevA.67.062313
7 D.Bruss and C.Macchiavello, Phys. Rev. Lett., 2002, 88: 127901.
doi: 10.1103/PhysRevLett.88.127901
8 D.Kaszlikowski, P.Gnacinski, M.Zukowski, W.Miklaszewski, and A.Zeilinger, Phys. Rev. Lett., 2000, 85: 4418.
doi: 10.1103/PhysRevLett.85.4418
9 J. L.Chen, D.Kaszlikowski, L. C.Kwek, M.Zukowski, and C. H.Oh, arXiv: quant-ph/0103099
10 A.Peres, Phys. Rev. Lett., 1996, 77: 1413.
doi: 10.1103/PhysRevLett.77.1413
11 M.Horodecki, P.Horodecki, and R.Horodecki, Phys. Lett. A, 1996, 223: 1.
doi: 10.1016/S0375‐9601(96)00706‐2
12 P.Horodecki, Phys. Lett. A, 1997, 232: 333.
doi: 10.1016/S0375‐9601(97)00416‐7
13 P.Rungta, V.Bužek, C. M.Caves, M.Hillery, and G. J.Milburn, Phys. Rev. A, 2001, 64(4): 042315.
doi: 10.1103/PhysRevA.64.042315
14 P.Badziag and P.Deuar, J. Mod. Opt., 2002, 49: 1289.
doi: 10.1080/09500340210121589
15 S.Hill and W. K.Wootters, Phys. Rev. Lett., 1997, 78: 5022.
doi: 10.1103/PhysRevLett.78.5022
16 W. K.Wootters, Phys. Rev. Lett., 1998, 80: 2245.
doi: 10.1103/PhysRevLett.80.2245
17 C. H.Bennett, G.Brassard, C.Cr peau, R.Jozsa, A.Peres, and W. K.Wootters, Phys. Rev. Lett., 1993, 70: 1895.
doi: 10.1103/PhysRevLett.70.1895
18 R. A.Horn and C. R.Johnson, Matrix Analysis, Cambridge: Cambridge University Press, 1985
19 S. L.Braunstein, C. M.Caves, R.Jozsa, N.Linden, S.Popescu, and R.Schack, Phys. Rev. Lett., 1999, 83: 1054.
doi: 10.1103/PhysRevLett.83.1054
20 G.Vidal and R.Tarrach, Phys. Rev. A, 1999, 59: 141.
doi: 10.1103/PhysRevA.59.141
21 C. M.Caves and G. J.Milburn, Opt. Commun., 2000, 179: 439.
doi: 10.1016/S0030‐4018(99)00693‐8
22 X.Wang and P.Zanardi, Phys. Rev. A, 2002, 66: 044303.
doi: 10.1103/PhysRevA.66.044303
23 P.Zanardi and M.Rasetti, Phys. Lett. A, 1999, 264: 94.
doi: 10.1016/S0375‐9601(99)00803‐8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed