|
|
Concurrence vectors for entanglement of high-dimensional
systems |
LI You-quan, ZHU Guo-qiang |
Zhejiang Institute of Modern Physics, Zhejiang University; |
|
|
Abstract The concurrence vectors are proposed by employing the fundamental representation of An Lie algebra, which provides a clear criterion to evaluate the entanglement of bipartite systems of arbitrary dimension. Accordingly, a state is separable if the norm of its concurrence vector vanishes. The state vectors related to SU(3) states and SO(3) states are discussed in detail. The sign situation of nonzero components of concurrence vectors of entangled bases presents a simple criterion to judge whether the whole Hilbert subspace spanned by those bases is entangled, or there exists an entanglement edge. This is illustrated in terms of the concurrence surfaces of several concrete examples.
|
Issue Date: 05 September 2008
|
|
1 |
C. H.Bennett and D. P.Divincenzo, Nature, 2000, 404: 247. doi: 10.1038/35005001
|
2 |
M. A.Nielsen and I. L.Chuang, Quantum Computationand Quantum Communication, Cambridge: Cambridge University Press, 2000
|
3 |
A. A.Zhukov, G. A.Maslennikov, and M. V.Chekhova, JETP Lett., 2002, 76(10): 596; arXiv: quant-ph/0305113. doi: 10.1134/1.1541042
|
4 |
R. T.Thew, A.Acin, H.Zbinden, and N.Gisin, arXiv: quant-ph/0307122
|
5 |
R.Das, A.Mitra, V.Kumar and A.Kumar, arXiv: quantph/0307240
|
6 |
A. B.Klimov, R.Guzman, J. C.Retamal, and S.Saavedra, Phys. Rev. A, 2003, 67: 062313. doi: 10.1103/PhysRevA.67.062313
|
7 |
D.Bruss and C.Macchiavello, Phys. Rev. Lett., 2002, 88: 127901. doi: 10.1103/PhysRevLett.88.127901
|
8 |
D.Kaszlikowski, P.Gnacinski, M.Zukowski, W.Miklaszewski, and A.Zeilinger, Phys. Rev. Lett., 2000, 85: 4418. doi: 10.1103/PhysRevLett.85.4418
|
9 |
J. L.Chen, D.Kaszlikowski, L. C.Kwek, M.Zukowski, and C. H.Oh, arXiv: quant-ph/0103099
|
10 |
A.Peres, Phys. Rev. Lett., 1996, 77: 1413. doi: 10.1103/PhysRevLett.77.1413
|
11 |
M.Horodecki, P.Horodecki, and R.Horodecki, Phys. Lett. A, 1996, 223: 1. doi: 10.1016/S0375‐9601(96)00706‐2
|
12 |
P.Horodecki, Phys. Lett. A, 1997, 232: 333. doi: 10.1016/S0375‐9601(97)00416‐7
|
13 |
P.Rungta, V.Bužek, C. M.Caves, M.Hillery, and G. J.Milburn, Phys. Rev. A, 2001, 64(4): 042315. doi: 10.1103/PhysRevA.64.042315
|
14 |
P.Badziag and P.Deuar, J. Mod. Opt., 2002, 49: 1289. doi: 10.1080/09500340210121589
|
15 |
S.Hill and W. K.Wootters, Phys. Rev. Lett., 1997, 78: 5022. doi: 10.1103/PhysRevLett.78.5022
|
16 |
W. K.Wootters, Phys. Rev. Lett., 1998, 80: 2245. doi: 10.1103/PhysRevLett.80.2245
|
17 |
C. H.Bennett, G.Brassard, C.Cr peau, R.Jozsa, A.Peres, and W. K.Wootters, Phys. Rev. Lett., 1993, 70: 1895. doi: 10.1103/PhysRevLett.70.1895
|
18 |
R. A.Horn and C. R.Johnson, Matrix Analysis, Cambridge: Cambridge University Press, 1985
|
19 |
S. L.Braunstein, C. M.Caves, R.Jozsa, N.Linden, S.Popescu, and R.Schack, Phys. Rev. Lett., 1999, 83: 1054. doi: 10.1103/PhysRevLett.83.1054
|
20 |
G.Vidal and R.Tarrach, Phys. Rev. A, 1999, 59: 141. doi: 10.1103/PhysRevA.59.141
|
21 |
C. M.Caves and G. J.Milburn, Opt. Commun., 2000, 179: 439. doi: 10.1016/S0030‐4018(99)00693‐8
|
22 |
X.Wang and P.Zanardi, Phys. Rev. A, 2002, 66: 044303. doi: 10.1103/PhysRevA.66.044303
|
23 |
P.Zanardi and M.Rasetti, Phys. Lett. A, 1999, 264: 94. doi: 10.1016/S0375‐9601(99)00803‐8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|