Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2010, Vol. 5 Issue (3) : 330-336    https://doi.org/10.1007/s11467-010-0004-z
Research articles
Chemical sensing based on the plasmonic response of nanoparticle aggregation: Anion sensing in nanoparticles stabilized by amino-functional ionic liquid
Aitzol GARCIA-ETXARRI1,Javier AIZPURUA1,Jon MOLINA-ALDAREGUIA2,Rebeca MARCILLA3,David MECERREYES3,Jose Adolfo POMPOSO4,
1.Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain;Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Centro Korta, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain; 2.CEIT–Centro de Estudios e Investigaciones Tecnicas de Gipuzkoa, Paseo Manuel de Lardizabal 15, 20018 Donostia-San Sebastian, Spain;IMDEA Materials, E. T. S. de Ingenieros de Caminos, c/Profesor Aranguren, s/n, 28040 Madrid, Spain; 3.CIDETEC–Centre for Electrochemical Technologies, Parque Tecnológico de San Sebastian, Paseo Miramon 196, 20009 Donostia-San Sebastian, Spain; 4.CIDETEC–Centre for Electrochemical Technologies, Parque Tecnológico de San Sebastian, Paseo Miramon 196, 20009 Donostia-San Sebastian, Spain;Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain;
 Download: PDF(326 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the synthesis, characterization and modellization of optical anion sensors based on gold nanoparticles (Au NPs) stabilized by amino-functional imidazolium ionic liquids (AFIL). The addition of different salts results in anion exchange of the imidazolium ionic liquid stabilizer leading to a change in the optical response of the original nanoparticle aqueous solution. In all cases except with dodecylbenzenesulfonic acid sodium salt, a sufficient amount of salt concentration (5 times larger than equimolar) leads to the appearance of an absorption band between 600 and 700 nm in the ultravioletvisible (UV-vis) spectrum. The presence of the salt produces aggregation of the particles that localise the optical response and produce a large spectral red shift. Transmission electron microscopy images demonstrated that this optical change was due to the aggregation of the nanoparticles. We simulate the optical response of both situations, before and after salt addition, and interpret the experimental observations in terms of the different response of metallic single nanoparticles and nanoparticle aggregates. Theoretical calculations for single nanoparticle and single nanoparticle dimers demonstrate that the colour change is not due to the enlargement or structural changes of the Au NPs, but due to the formation of NP aggregation. These results show the potential of nanoparticle plasmonics to perform effective chemical sensing.
Keywords ionic liquids      metallic nanoparticles      surface plasmons      anion sensor      
Issue Date: 05 September 2010
 Cite this article:   
Aitzol GARCIA-ETXARRI,Jon MOLINA-ALDAREGUIA,Javier AIZPURUA, et al. Chemical sensing based on the plasmonic response of nanoparticle aggregation: Anion sensing in nanoparticles stabilized by amino-functional ionic liquid[J]. Front. Phys. , 2010, 5(3): 330-336.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-010-0004-z
https://academic.hep.com.cn/fop/EN/Y2010/V5/I3/330
A. Otto, Spectroscopy and Surface Polaritons by Attenuated Total Reflection, in: Optical Properties of Solids, New Developments, edited by B. O. Seraphin, New York: North-Holland, 1976, Chap. 13: 677―727
B. Liedberg, C. Nylander, and I. Lundstrom, Sens. Actuators, 1983, 4: 299

doi: 10.1016/0250-6874(83)85036-7
E. Fontana, R. H. Pantell, and S. Strober, Applied Optics, 1990, 29: 4694

doi: 10.1364/AO.29.004694
A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B, 2004, 108: 6961

doi: 10.1021/jp036261n
L. M. Liz Marzan, Materials Today, 2004, 2: 26

doi: 10.1016/S1369-7021(04)00080-X
C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett., 2006, 6: 683

doi: 10.1021/nl052409y
J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tence, L. Henrard, D. Taverna, L. M. Pastoriza-Santos, L. M Liz-Marzan, and C. Colliex, Nature Phys., 2007, 3: 348

doi: 10.1038/nphys575
E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, Nano Lett., 2007, 7: 1256

doi: 10.1021/nl0701612
S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, Nano Lett., 2006, 6: 1687

doi: 10.1021/nl060865w
R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science, 1997, 277: 1078

doi: 10.1126/science.277.5329.1078
J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc., 1998, 120: 1959

doi: 10.1021/ja972332i
N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. Lytton-Jean, M. S. Han, and C. A. Mirkin, Science, 2006, 312: 1027

doi: 10.1126/science.1125559
J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, J. Am. Chem. Soc., 2000, 122: 4640

doi: 10.1021/ja993825l
R. Jin, G. Wu, Z. Li, C. A. Mirkin, and G. C. Schatz, J. Am. Chem. Soc., 2003, 125: 1643

doi: 10.1021/ja021096v
R. D. Rogers, K. R. Seddon, and S. Volkov, Green Industrial Applications of IonicLiquids, Kluwer: Dordrecht, 2003, Vol. 92
H. Randriamahazaka, C. Plesse, D. Teyssie, and C. Chevrot, Electrochemistry Communications, 2004, 6: 299

doi: 10.1016/j.elecom.2004.01.002
T. Welton, Chem. Rev., 1999, 99: 2071

doi: 10.1021/cr980032t
H. Ohno, Electrochemical Aspects of Ionic Liquids, Hoboken, New Jersey: Wiley-VCH, 2005

doi: 10.1002/0471762512
M. C. Buzzeo, R. G. Evans, and R. G. Compton, ChemPhysChem, 2004, 5: 1107

doi: 10.1002/cphc.200301017
J. H. Shin, W. A. Henderson, and S. Passerini, Electrochemistry Communications, 2003, 5: 1016

doi: 10.1016/j.elecom.2003.09.017
P. Wang, S. M. Zakeeruddin, J. E. Moser, and M. Gratzel, J. Phys. Chem. B, 2003, 107: 13280

doi: 10.1021/jp0355399
W. Lu, A. G. Fadeev, B. H. Qi, E. Smela, B. R. Mattes, J. Ding, G. M. Spinks, J. Mazurkiewicz, D. Z. Zhou, G. G. Wallace, D. R. MacFarlane, S. A. Forsyth, and M. Forsyth, Science, 2002, 297: 983

doi: 10.1126/science.1072651
T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, and T. Aida, Science, 2003, 300: 2072

doi: 10.1126/science.1082289
H. Itoh, K. Naka, and Y. Chujo, J. Am. Chem. Soc., 2004, 126: 3026

doi: 10.1021/ja039895g
H. Xu, J. Aizpurua, P Apell, and M. K?ll, Phys. Rev. E, 2000, 62: 4318

doi: 10.1103/PhysRevE.62.4318
E. Hao and G. C. Schatz, J. Chem. Phys., 2004, 120: 357

doi: 10.1063/1.1629280
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Nano Lett., 2004, 4: 899

doi: 10.1021/nl049681c
I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, Optics Express, 2006, 14: 9988

doi: 10.1364/OE.14.009988
J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, Nano Lett., 2008, 8: 1212

doi: 10.1021/nl080271o
F. J. Garcia de Abajo and J. Aizpurua, Phys. Rev. B, 1997, 56: 15873

doi: 10.1103/PhysRevB.56.15873
F. J. Garcia de Abajo and A. Howie, Phys. Rev. Lett., 1998, 80: 5180

doi: 10.1103/PhysRevLett.80.5180
J. Aizpurua, P. Hanarp, D. S. Sutherland, M. K?ll, G. W. Bryant, and F. J. Garcia de Abajo, Phys. Rev. Lett., 2003, 90: 057401

doi: 10.1103/PhysRevLett.90.057401
R. Marcilla, D. Mecerreyes, I. Odriozola, J. A. Pomposo, J. Rodriguez, I. Zalakain, and I. Mondragon, Nano, 2007, 2(3): 1
C. Wakai, A. Oleinikova, M. Ott, and H. Weingartner, J. Phys. Chem. B, 2005, 109: 17028

doi: 10.1021/jp053946+
A. Berthod, J. J. Kozak, J. L. Anderson, J. Ding, and D. W. Armstrong, Theor. Chem. Acc., 2007, 117: 127

doi: 10.1007/s00214-006-0155-8
[1] Pratik CHATURVEDI, Nicholas X. FANG, . Sub-diffraction-limited far-field imaging in infrared[J]. Front. Phys. , 2010, 5(3): 324-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed