Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (3) : 366-372    https://doi.org/10.1007/s11467-011-0208-x
RESEARCH ARTICLE
A novel snowdrift game model with edge weighting mechanism on the square lattice
Juan-juan Zhang (张娟娟)1,2, Hong-yun Ning (宁红云)1,2, Zi-yu Yin (银子瑜)3, Shi-wen Sun (孙世温)1,2, Li Wang (王莉)1,2, Jun-qing Sun (孙俊清)1,2(), Cheng-yi Xia (夏承遗)1,2()
1. Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384, China; 2. Key Laboratory of Computer Vision and System of Ministry of Education, Tianjin University of Technology, Tianjin 300384, China; 3. School of Physics, Nankai University, Tianjin 300071, China
 Download: PDF(439 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a novel snowdrift game model with edge weighting mechanism to explore the cooperative behaviors among the players on the square lattice. Based on the assumption of three types of weight distribution including uniform, exponential and power-law schemes, the cooperation level is largely boosted in contrast with the traditional snowdrift game on the unweighted square lattice. Extensive numerical simulations indicate that the fraction of cooperators greatly augments, especially for the intermediate range of cost-to-benefit ratio r. Furthermore, we investigate how the cooperative behaviors are affected by the undulation amplitude of weight distribution and noise strength of strategy selection, respectively. The simulation results will be conducive to further understanding and analyzing the emergence of cooperation, which is a ubiquitous phenomenon in social and biological science.

Keywords snowdrift game      edge weighting mechanism      cooperative dynamics     
Corresponding Author(s): null,Email:jqsun@163.com; null,Email:xialooking@163.com   
Issue Date: 01 June 2012
 Cite this article:   
Juan-juan Zhang (张娟娟),Hong-yun Ning (宁红云),Zi-yu Yin (银子瑜), et al. A novel snowdrift game model with edge weighting mechanism on the square lattice[J]. Front. Phys. , 2012, 7(3): 366-372.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0208-x
https://academic.hep.com.cn/fop/EN/Y2012/V7/I3/366
1 A. M. Colman, Game Theory and Its Applications in the Social and Biological Sciences, Oxford: Oxford University Press, 1995
2 J. M. Smith, Evolution and the Theory of Games, Cambridge: Cambridge University Press, 1982
3 G. Szabó and G. Fáth, Phys. Rep. , 2007, 46: 97
4 R. Axelrod and W. D. Hamilton, Science , 1981, 211: 1390
doi: 10.1126/science.7466396
5 M. A. Nowak and K. Sigmund, Nature (London) , 1998, 393: 573
doi: 10.1038/31225
6 W. D. Hamilton, J. Theor. Biol. , 1964, 7: 1
doi: 10.1016/0022-5193(64)90038-4
7 M. Perc and A. Szolnoki, Phys. Rev. E , 2008, 77: 011904
doi: 10.1103/PhysRevE.77.011904
8 R. Boyd, H. Gintis, S. Bowles, and P. J. Richerson, Proc. Natl. Acad. Sci. USA , 2003, 100: 3531
doi: 10.1073/pnas.0630443100
9 H. F. Zhang, R. R. Liu, Z. Wang, and B. H. Wang, Europhys. Lett. , 2011, 94: 18006
doi: 10.1209/0295-5075/94/18006
10 Z. Wang and M. Perc, Phys. Rev. E , 2010, 82: 021115
doi: 10.1103/PhysRevE.82.021115
11 M. Perc and Z. Wang, PLoS One , 2010, 5: e15117
doi: 10.1371/journal.pone.0015117
12 X. B. Cao, W. B. Du, and Z. H. Rong, Physica A , 2010, 389: 1273
doi: 10.1016/j.physa.2009.11.044
13 Z. Wang, Z. J. Xu, and L. Z. Zhang, Chin. Phys. B , 2010, 19: 110201
doi: 10.1088/1674-1056/19/11/110201
14 C. Hauert and M. Doebeli, Nature(London) , 2004, 428: 643
doi: 10.1038/nature02360
15 M. Sys-Aho, J. Saram?ki J, J. Kertész, and K. Kaski, Eur. Phys. J. B , 2005, 44: 129
16 M. G. Zimmermann, V. Eguíluz, and M. S. Miguel, Phys. Rev. E , 2004, 69: 065102R
doi: 10.1103/PhysRevE.69.065102
17 Z. Wang, A. Murks, W. B. Du, Z. H. Rong, and M. Perc, J. Theor. Biol. , 2011, 277: 19
doi: 10.1016/j.jtbi.2011.02.016
18 A. Szolnoki and M. Perc, New J. Phys. , 2008, 10: 043036
doi: 10.1088/1367-2630/10/4/043036
19 P. Holme and G. Ghostal, Phys. Rev. Lett. , 2006, 96: 098701
doi: 10.1103/PhysRevLett.96.098701
20 J. M. Pacheco, A. Traulsen, and M. A. Nowak, Phys. Rev. Lett. , 2006, 97: 258103
doi: 10.1103/PhysRevLett.97.258103
21 Z. J. Xu, Z. Wang, and L. Z. Zhang, Phys. Rev. E , 2009, 80: 061104
doi: 10.1103/PhysRevE.80.061104
22 W. B. Du, X. B. Cao, H. X. Yang, and M. B. Hu, Chin. Phys. B , 2010, 19: 010204
23 Z. Wang, Z. J. Xu, J. H. Huang, and L. Z. Zhang, Chin. Phys. B , 2010, 19: 100204
doi: 10.1088/1674-1056/19/10/100204
24 F. Feng, T. Wu, and L. Wang, Phys. Rev. E , 2009, 79: 036101
doi: 10.1103/PhysRevE.79.036101
25 J. Poncela, J. Gómez-Garde?es, L. M. Floría, A. Sanchez, and Y. Moreno, PLoS One , 2008, 3: e2449
doi: 10.1371/journal.pone.0002449
26 J. Poncela, J. Gómez-Garde?es, Y. Moreno, and A. Traulsen, New J. Phys. , 2009, 11: 083031
doi: 10.1088/1367-2630/11/8/083031
27 J. Poncela, J. Gómez-Garde?es, L. M. Floría, Y. Moreno, and A. Sanchez, Europhys. Lett. , 2009, 88: 38003
doi: 10.1209/0295-5075/88/38003
28 X. J. Xu, Z. X. Wu, and Y. H. Wang, Chin. Phys. Lett. , 2005, 22: 1548
doi: 10.1088/0256-307X/22/6/069
29 L. Huang, Y. C. Lai, K. Park, X. G. Wang, C. H. Lai, and R. A. Gatenby, Front. Phys. China , 2007, 2:446
doi: 10.1007/s11467-007-0056-x
30 M. Zhao, T. Zhou, G. R. Chen, and B. H. Wang, Front. Phys. China , 2007, 2: 460
doi: 10.1007/s11467-007-0058-8
31 Z. G. Zheng, X. Q. Feng, B. Ao, and M. C. Cross, Front. Phys. China , 2006, 1: 458
doi: 10.1007/s11467-006-0047-3
32 R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. , 2001, 86: 3200
doi: 10.1103/PhysRevLett.86.3200
33 J. Zhou and Z. H. Liu, Front. Phys. China , 2008, 3: 331
doi: 10.1007/s11467-008-0027-x
34 M. Tang, L. Liu, and Z. H. Liu, Phys. Rev. E , 2009, 79: 016108
doi: 10.1103/PhysRevE.79.016108
35 M. Tang, Z. H. Liu, and B. W. Li, Euro. Phys. Lett. , 2009, 87: 18005
doi: 10.1209/0295-5075/87/18005
36 X. H. Liao, Y. Qian, Y. Y. Mi, Q. Z. Xia, X. Q. Huang, and G. Hu, Front. Phys. , 2011, 6: 124
doi: 10.1007/s11467-010-0152-1
37 M. E. J. Newman, Proc. Natl. Acad. Sci. USA , 2001, 98: 404
doi: 10.1073/pnas.021544898
38 A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, Proc. Natl. Acad. Sci. USA , 2004, 101: 3747
doi: 10.1073/pnas.0400087101
39 Z. H. Rong, X. Li, and X. F. Wang, Phys. Rev. E , 2007, 76: 027101
doi: 10.1103/PhysRevE.76.027101
40 J. Gómez-Garde?es, M. Campillo, F. Floría, and Y. Moreno, Phys. Rev. Lett. , 2007, 98: 108103
41 Z. H. Rong and Z. X. Wu, Europhys. Lett. , 2009, 87: 30001
doi: 10.1209/0295-5075/87/30001
42 C. Y. Xia, J. Zhao, J. Wang, Y. L. Wang, and H. Zhang, Phys. Scr. , 2011, 84: 025802
doi: 10.1088/0031-8949/84/02/025802
43 G. Szabó and C. Toke, Phys. Rev. E , 1998, 58: 69
doi: 10.1103/PhysRevE.58.69
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed