Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (5) : 527-532    https://doi.org/10.1007/s11467-012-0252-1
RESEARCH ARTICLE
Steady-state property and dynamics in graphene-nanoribbon-array lasers
Xing-Hai Zhao1(), Guang-Cun Shan2(), Chan-Hung Shek2
1. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China; 2. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
 Download: PDF(316 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, we present a schematic configuration and devicemodel for a graphene-nanoribbon (GNR)-array-based nanolaser, whichconsists of a three-variable rate equations that takes into accountcarrier capture and Pauli blocking in semiconductor GNR-array lasersto analyze the steadystate properties and dynamics in terms of therole of the capture rate and the gain coefficient in GNR array nanolasers.Furthermore, our GNR-array nanolaser device model can be determinedas two distinct two-variable reductions of the rate equations in thelimit of large capture rates, depending on their relative values.The first case leads to the rate equations for quantum well lasers,exhibiting relaxation oscillations dynamics. The second case correspondsto GNRs nearly saturated by the carriers and is characterized by theabsence of relaxation oscillations. Our results here demonstratedthat GNR-array as gain material embedded into a high finesse microcavitycan serve as an ultralow lasing threshold nanolaser with promisingapplications ranging widely from optical fiber communication withincreasing data processing speed to digital optical recording andbiology spectroscopy.

Keywords graphene nanoribbon      graphenenanoribbon laser      laser theory      laser model     
Corresponding Author(s): Zhao Xing-Hai,Email:xinghai839@yahoo.cn; Shan Guang-Cun,Email:041055004@fudan.edu.cn   
Issue Date: 01 October 2012
 Cite this article:   
Xing-Hai Zhao,Guang-Cun Shan,Chan-Hung Shek. Steady-state property and dynamics in graphene-nanoribbon-array lasers[J]. Front. Phys. , 2012, 7(5): 527-532.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-012-0252-1
https://academic.hep.com.cn/fop/EN/Y2012/V7/I5/527
1 D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures , New York: Wiley, 1999
2 M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Y. M. Shernyakov, Appl. Phys. Lett. , 2002, 81(20): 3846
doi: 10.1063/1.1521572
3 D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett. , 2004, 29: 1074
doi: 10.1364/OL.29.001072
4 S. Melnik, G. Huyet, and A. V. Uskov, Opt. Express , 2006, 14(7): 2950
doi: 10.1364/OE.14.002950
5 T. Erneux, E. A. Viktorov, and P. Mandel, Phys. Rev. A , 2007, 76(2): 023819
doi: 10.1103/PhysRevA.76.023819
6 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science , 2004, 306(5696): 666
doi: 10.1126/science.1102896
7 K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. R?hrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nat. Mater. , 2009, 8(3): 203
doi: 10.1038/nmat2382
8 C. Stampfer, S. Fringes, J. Guttinger, F. Molitor, C. Volk, B. Terres, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Droscher, T. Ihn, and K. Ensslin, Front. Phys. , 2011, 6(3): 271
doi: 10.1007/s11467-011-0182-3
9 Z. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, Physica E , 2007, 40(2): 228
doi: 10.1016/j.physe.2007.06.020
10 M. Y. Han, B. ?zyilmaz, Y. Zhang, and P. Kim, Phys.Rev. Lett. , 2007, 98(20): 206805
doi: 10.1103/PhysRevLett.98.206805
11 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. , 2010, 4(9): 611
doi: 10.1038/nphoton.2010.186
12 G. C. Shan, X. H. Zhao, and W. Huang, J. Nanoelectron. Optoelectron. , 2011, 6(2): 138
13 L. Brey and H. A. Fertig, Phys. Rev. B , 2006, 73(23): 235411
doi: 10.1103/PhysRevB.73.235411
14 L. Yang, C. H. Park, Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. , 2007, 99(18): 186801
doi: 10.1103/PhysRevLett.99.186801
15 L. Yang, M. L. Cohen, and S. G. Louie, Nano Lett. , 2007, 7(10): 3112
doi: 10.1021/nl0716404
16 J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, J. Opt. Soc. Am. B , 1985, 2(1): 173
17 A. Fiore and A. Markus, IEEE J. Quantum Electron. , 2007, 43(4): 287
18 J. V. Uspensky, Theory of Equations , New York: McGraw- Hill, 1948
doi: 10.1063/1.3247541
19 V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Ya. Aleshkin, J. Appl. Phys. , 2009, 106(8): 084507
[1] Tingting Zhang,Shuang Wu,Rong Yang,Guangyu Zhang. Graphene: Nanostructure engineering and applications[J]. Front. Phys. , 2017, 12(1): 127206-.
[2] Wan-Ju Li, Dao-Xin Yao, E. W. Carlson. Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon[J]. Front. Phys. , 2014, 9(4): 472-476.
[3] Qin-wei SHI (石勤伟), Zheng-fei WANG (王征飞), Qun-xiang LI (李群祥), Jin-long YANG (杨金龙). Chiral selective tunneling induced graphene nanoribbon switch[J]. Front Phys Chin, 2009, 4(3): 373-377.
[4] Bing HUANG (黄兵), Qi-min YAN (严琪闽), Zuan-yi LI (李缵轶), Wen-hui DUAN (段文晖). Towards graphene nanoribbon-based electronics[J]. Front Phys Chin, 2009, 4(3): 269-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed