Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (5) : 665-670    https://doi.org/10.1007/s11467-014-0434-0
RESEARCH ARTICLE
Modulation of four-wave mixing via photonic band gap
Zhen-Kun Wu1,*(),Kai-Ge Chang1,Yi Hu2,Yun-Zhe Zhang3,Zi-Hai Jiang1,Yan-Peng Zhang1
1. Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique and School of Science, Xi’an Jiaotong University, Xi’an 710049, China
2. Education Institute of Taiyuan University, Taiyuan 030001, China
3. Institute of Applied Physics, Xi’an University of Arts and Science, Xi’an 710065, China
 Download: PDF(353 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The dressed four-wave mixing (FWM) in a four-level 85Rb atomic system, experimentally demonstrated in this paper, is comprised by two coexisting processes. One is emission signal due to enhanced nonlinear via electromagnetically induced transparency (EIT). The other is the Bragg reflection of probe beam because of the created photonic band gap (PBG), which is affected by both linear and third-order nonlinear susceptibility. Moreover, we have demonstrated that different experimental parameters can significantly influence the measured signal with flexibly controlled PBG. These studies are found useful for understanding the fundamental mechanisms in generated FWM processing.

Keywords four-wave mixing (FWM)      electromagnetically induced transparency (EIT)      photonic band gap (PBG)     
Corresponding Author(s): Zhen-Kun Wu   
Issue Date: 15 October 2014
 Cite this article:   
Zhen-Kun Wu,Kai-Ge Chang,Yi Hu, et al. Modulation of four-wave mixing via photonic band gap[J]. Front. Phys. , 2014, 9(5): 665-670.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0434-0
https://academic.hep.com.cn/fop/EN/Y2014/V9/I5/665
1 K. J. Boller, A. Imamolu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett., 1991, 66(20): 2593
https://doi.org/10.1103/PhysRevLett.66.2593
2 J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment, Phys. Rev. A, 1995, 51(1): 576
https://doi.org/10.1103/PhysRevA.51.576
3 H. Kang, G. Hernandez, and Y. Zhu, Resonant four-wave mixing with slow light, Phys. Rev. A, 2004, 70(6): 061804 (R)
https://doi.org/10.1103/PhysRevA.70.061804
4 M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence, Phys. Rev. Lett., 1999, 82(9): 1847
https://doi.org/10.1103/PhysRevLett.82.1847
5 P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, Efficient low intensity optical phase conjugation based on coherent population trapping in sodium, Opt. Lett., 1995, 20(9): 982
https://doi.org/10.1364/OL.20.000982
6 M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Efficient nonlinear frequency conversion with maximal atomic coherence, Phys. Rev. Lett., 1996, 77(21): 4326
https://doi.org/10.1103/PhysRevLett.77.4326
7 M. Artoni and G. C. La Rocca, Optically tunable photonic stop bands in homogeneous absorbing media, Phys. Rev. Lett., 2006, 96(7): 073905
https://doi.org/10.1103/PhysRevLett.96.073905
8 J. W. Gao, Y. Zhang, N. Ba, C. L. Cui, and J. H. Wu, Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence, Opt. Lett., 2010, 35(5): 709
https://doi.org/10.1364/OL.35.000709
9 Z. K. Wu, Y. Q. Zhang, T. K. Liu, Z. Y. Zhang, C. Li, Y. P. Zhang, and M. Xiao, Coherent control of dressed images of four-wave mixing, Front. Phys., 2013, 8(2): 228
https://doi.org/10.1007/s11467-013-0289-9
10 Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, C. B. Li, Z. G. Wang, and M. Xiao, Surface solitons of fourwave mixing in an electromagnetically induced lattice, Laser Phys. Lett., 2013, 10(5): 055406
https://doi.org/10.1088/1612-2011/10/5/055406
11 Z. G. Wang, P. Ying, P. Y. Li, H. Y. Lan, H. Q. Huang, H. Tian, J. P. Song, and Y. P. Zhang, Phase regulated suppression and enhancement switches of four-wave mixing and fluorescence, Front. Phys., 2014, 9(2): 153
https://doi.org/10.1007/s11467-013-0402-0
12 A. Imamolu and S. E. Harris, Lasres without inversion: Interference of dressed lifetime-broadened state, Opt. Lett., 1989, 14(24): 1344
https://doi.org/10.1364/OL.14.001344
13 G. Wang, H. Lu, and X. Liu, Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency, Opt. Exp., 2012, 20: 902
14 C. Liu, Z. Dutton, C. Behroozi, and L. Hau, Controlling photons using electromagnetically induced transparency, Nature, 2001, 409: 490
https://doi.org/10.1038/35054017
15 X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber, Opt. Exp., 2005, 13(1): 142
https://doi.org/10.1364/OPEX.13.000142
16 J. H. Wu, M. Artoni, and G. C. La Rocca, Controlling the photonic band structure of optically driven cold atoms, J. Opt. Soc. Am. B, 2008, 25(11): 1840
https://doi.org/10.1364/JOSAB.25.001840
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed