|
|
Characteristics of indirect laser-induced plasma from a thin film of oil on a metallic substrate |
Xiu Jun-Shan(修俊山)1,*( ),Bai Xue-Shi(白雪石)2,Vincent Motto-Ros2,Yu Jin(俞进)2 |
1. Department of Sciences, Shandong University of Technology, Zibo 255049, China
2. Institut Lumière Matière, UMR5306 Universitè Lyon 1-CNRS, Universitè de Lyon, 69622 Villeurbanne Cedex, France |
|
|
Abstract Optical emissions from the major and trace elements embodied in a transparent gel prepared from cooking oil were detected after the gel was spread in a thin film on a metallic substrate. Such emissions are due to the indirect breakdown of the coating layer. The generated plasma, a mixture of substances from the substrate, the layer, and the ambient gas, was characterized using emission spectroscopy. The characteristics of the plasma formed on the metal with and without the coating layer were investigated. The results showed that Al emission induced from the aluminum substrates coated with oil films extends away from the target surface to ablate the oil film. This finally formed a bifurcating circulation of aluminum vapor against a spherical confinement wall in the front of the plume, which differed from the evolution of the plasma induced from the uncoated aluminum target. The strongest emissions of elements from the oil films can be observed at 2 mm above the target after a detection delay of 1.0 μs. A high temperature zone has been observed in the plasma after the delay of 1.0 μs for the plasma induced from the coated metal. This higher temperature determined in the plasma allows the consideration of the sensitive detection of trace elements in liquids, gels, biological samples, or thin films.
|
Keywords
indirect laser-induced plasma
thin layer
aluminum substrate
higher temperature
|
Corresponding Author(s):
Xiu Jun-Shan(修俊山)
|
Issue Date: 13 March 2015
|
|
1 |
Y. H. Wei, J. Y. Zhang, T. C. Dai, T. H. Tu, and L. G. Luo, Determination of chlorine in hogwash oil and edible oil by ion chromatograph, Food Science 32(12), 213 (2011)
|
2 |
Q. A. Ricardo, M. S. Roseli, C. C. Reinaldo, M. Norbert, and L. P. S. Carmem, The determination of trace in lubricating oils by atomic spectrometry, Spectrochim. Acta B 62(9), 952 (2007)
https://doi.org/10.1016/j.sab.2007.05.003
|
3 |
L. Caneve, F. Colao, F. Sarto, V. Spizzichino, and M. Vadrucci, Laser-induced breakdownspectroscopy as a diagnostic tool for thin films elemental composition, Spectrochim. Acta B 60(7-8), 1098 (2005)
https://doi.org/10.1016/j.sab.2005.05.011
|
4 |
P. Celio, C. Juliana, M. C. S. Lucas, and B. G. Fabinao, Laser induced breakdown spectroscopy, J. Braz. Chem. Soc. 18(3), 463 (2007)
https://doi.org/10.1590/S0103-50532007000300002
|
5 |
A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, From single pulse to double pulse ns-Laser Induced Breakdown Spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples, Spectrochim. Acta B 62(8), 721 (2007)
https://doi.org/10.1016/j.sab.2007.06.008
|
6 |
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
|
7 |
J. Yu and R. E. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 647 (2012)
https://doi.org/10.1007/s11467-012-0275-7
|
8 |
F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)
https://doi.org/10.1007/s11467-012-0263-y
|
9 |
L. Zhang, Z. Y. Hu, W. Y. Bao, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)
https://doi.org/10.1007/s11467-012-0259-7
|
10 |
V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. N. Kononovb, N. N. Vasilevb, and S. N. Isakov, Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy, Spectrochim. Acta B 64(2), 141 (2009)
https://doi.org/10.1016/j.sab.2008.11.005
|
11 |
F. Boué-Bigne, Laser induced breakdown spectroscopy applications in the steel industry: Rapid analysis of segregation and decarburization, Spectrochim. Acta B 63(10), 1122 (2008)
https://doi.org/10.1016/j.sab.2008.08.014
|
12 |
J. Kaiser, M. Galiová, K. Novotny, R. èervenk, L. Reale, J. Novotny, M. Li?ka, O. Samek, V. Kanicky, A. Hrdlièk, K. Stejskal, V. Adam, and R. Kizek, Mapping of lead, magnesium and copper accumulation in plant tissues by laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry, Spectrochim. Acta B 64(1), 67 (2009)
https://doi.org/10.1016/j.sab.2008.10.040
|
13 |
P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, Quantitative elemental determination inwater and oil by laser induced breakdown spectroscopy, Anal. Chim. Acta 429(2), 269 (2001)
https://doi.org/10.1016/S0003-2670(00)01277-0
|
14 |
M. A. Gondal and T. Hussain, Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy, Talanta 71(1), 73 (2007)
https://doi.org/10.1016/j.talanta.2006.03.022
|
15 |
A. Kumar, F. Y. Yueh, and J. P. Singh, Double-pulse laserinduced breakdown spectroscopy with liquid jets of different thicknesses, Appl. Opt. 42(30), 6047 (2003)
https://doi.org/10.1364/AO.42.006047
|
16 |
N. K. Rai and A. K. Rai, LIBS-An efficient approach for the determination of Cr in industrial wastewater, J. Hazard. Mater. 150(3), 835 (2008)
https://doi.org/10.1016/j.jhazmat.2007.10.044
|
17 |
R. L. VanderWal, T. M. Ticich, J. R. West, and Jr. P. A. Householder, Trace metal detection by Laser-Induced Breakdown Spectroscopy, Appl. Spectrosc. 53(10), 1226 (1999)
https://doi.org/10.1366/0003702991945461
|
18 |
Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates, Spectrochim. Acta B 63(1), 64 (2008)
https://doi.org/10.1016/j.sab.2007.11.010
|
19 |
D. Alamelu, A. Sarkar, and S. K. Aggarwal, Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution, Talanta 77(1), 256 (2008)
https://doi.org/10.1016/j.talanta.2008.06.021
|
20 |
Y. L. Yu, W. D. Zhou, H. G. Qian, X. J. Su, and K. Ren, Simultaneous determination of trace lead and chromium in water using laser-induced breakdown spectroscopy and paper substrate, Plasma Sci. Technol. 16(7), 683 (2014)
https://doi.org/10.1088/1009-0630/16/7/09
|
21 |
Q. Y. Lin, Z. M. Wei, M. J. Xu, S. Wang, G. H. Niu, K. P. Liu, Y. X. Duan, and J. Yang, Laser-induced breakdown spectroscopy for solution sample analysis using porous electrospun ultrafine fibers as a solid-phase support, RSC Advances 4(28), 14392 (2014)
https://doi.org/10.1039/c3ra47697a
|
22 |
A. Nadir, ü. Y. Semira, A. A. Dilek, Y. Erife, Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy, Spectrochim. Acta B 74-75(8-9), 87 (2012)
|
23 |
P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, Quantitative determination of wear metal in engine oils using laser-induced breakdown spectroscopy: A comparison between liquid jets and static liquids, Spectrochim. Acta B 60(7-8), 986 (2005)
|
24 |
I. Y. Elnasharty, A. K. Kassem, M. Sabsabi, and M. A. Harith, Diagnosis of lubricating oil by evaluating cyanide and carbon molecular emission lines in laser induced breakdown spectra, Spectrochim. Acta B 66(8), 588 (2011)
https://doi.org/10.1016/j.sab.2012.11.011
|
25 |
M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, Elemental analysis by surfaceenhanced Laser-Induced Breakdown Spectroscopy combined with liquid-liquid microextraction, Spectrochim. Acta B 79-80(1-2), 88 (2013)
https://doi.org/10.1016/S0584-8547(02)00062-9
|
26 |
L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy, Spectrochim. Acta B 57(7), 1131 (2002)
https://doi.org/10.1063/1.4772787
|
27 |
X. S. Bai, Q. L. Ma, V. Motto-Ros, J. Yu, D. Sabourdy, L. Nguyen, and A. Jalocha, Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure, J. Appl. Phys. 113(1), 013304 (2013)
https://doi.org/10.1366/000370206776342706
|
28 |
A. Sáinz, A. Díaz, D. Casas, M. Pineda, F. Cubillo, and M. D. Calzada, Abel inversionapplied to a small set of emission data from a microwave plasma, Appl. Spectrosc. 60(3), 229 (2006)
https://doi.org/10.1016/j.sab.2010.08.005
|
29 |
Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas, Spectrochim. Acta B 65(11), 89 (2010)
https://doi.org/10.1063/1.1500419
|
30 |
T. Sakka, T. Nakajima, and Y. H. Ogata, Spatial population distribution of laser ablationspecies determined by self-reversed emission line profile, J. Appl. Phys. 92(5), 2296 (2002)
https://doi.org/10.1016/j.sab.2006.03.014
|
31 |
A. M. El Sherbini, H. Hegazy, and Th. M. El Sherbini, Measurement of electron density utilizing the Hα-line from laser produced plasma in air, Spectrochim. Acta B 61(5), 532 (2006)
|
32 |
H. R. Griem, Spectral Line Broadening by Plasmas, New York: Academic Press, 1974
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|