Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (5) : 102401    https://doi.org/10.1007/s11467-015-0510-0
RESEARCH ARTICLE
Nuclear dynamical octupole deformation in heavy-ion reactions
Cheng Tang1,Xin Jin1,Nan Wang1,*(),En-Guang Zhao2,3,4
1. College of Physics, Shenzhen University, Shenzhen 518060, China
2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
3. Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China
4. School of Physics, Peking University, Beijing 100871, China
 Download: PDF(272 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Within the quantum molecular dynamics (QMD) model, the dynamical octupole deformation is studied as a function of the central distance between the projectile and target in the approaching process of heavy-ion fusion reactions. The dependence of the maximum dynamical octupole deformations on the incident energies is also investigated. The dynamical octupole deformations can be observed during the approaching process, and the maximum dynamical octupole deformations become more significant with decreasing incident energies. The distributions of the proton and neutron centers in the projectile and target are also investigated, respectively. In the approaching process of heavy-ion fusion reactions, the separation between proton centers for two nuclei is larger than that between neutron centers because of the strong Coulomb potential.

Keywords heavy-ion reactions      nuclear deformation      quantum molecular dynamics model     
Corresponding Author(s): Nan Wang   
Issue Date: 26 October 2015
 Cite this article:   
Cheng Tang,Xin Jin,Nan Wang, et al. Nuclear dynamical octupole deformation in heavy-ion reactions[J]. Front. Phys. , 2015, 10(5): 102401.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0510-0
https://academic.hep.com.cn/fop/EN/Y2015/V10/I5/102401
1 S. Hofmann and G. Münzenberg, The discovery of the heaviest elements, Rev. Mod. Phys. 72(3), 733 (2000)
https://doi.org/10.1103/RevModPhys.72.733
2 Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, O. V. Ivanov, A. N. Voinov, V. I. Zagrebaev, K. J. Moody, J. F. Wild, N. J. Stoyer, M. A. Stoyer, and R. W. Lougheed, Measurements of cross sections for the fusionevaporation reactions 204;206;207;208Pb+ 48Ca and 207Pb+ 34S: Decay properties of the even-even nuclides 238Cf and 250No, Phys. Rev. C 64(5), 054606 (2001)
https://doi.org/10.1103/PhysRevC.64.054606
3 Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, R. I. Il’kaev, and S. P. Vesnovskii, Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233;238U, 242Pu, and 248Cm+48Ca, Phys. Rev. C 70(6), 064609 (2004)
https://doi.org/10.1103/PhysRevC.70.064609
4 Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Y. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, K. J. Moody, J. B. Patin, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, J. M. Kenneally, J. H. Landrum, J. F. Wild, and R. W. Lougheed, Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions, Phys. Rev. C 74(4), 044602 (2006)
https://doi.org/10.1103/PhysRevC.74.044602
5 Z. Y. Zhang, Z. G. Gan, L. Ma, M. H. Huang, T. H. Huang, X. L. Wu, G. B. Jia, G. S. Li, L. Yu, Z. Z. Ren, S. G. Zhou, Y. H. Zhang, X. H. Zhou, H. S. Xu, H. Q. Zhang, G. Q. Xiao, and W. L. Zhan, Observation of the superheavy nuclide 271Ds, Chin. Phys. Lett. 29(1), 012502 (2012)
https://doi.org/10.1088/0256-307X/29/1/012502
6 G. Adamian, N. Antonenko, and W. Scheid, Model of competition between fusion and quasifission in reactions with heavy nuclei, Nucl. Phys. A 618(1−2), 176 (1997)
https://doi.org/10.1016/S0375-9474(97)88172-9
7 G. Mandaglio, G. Giardina, A. K. Nasirov, and A. Sobiczewski, Investigation of the 48Ca+ 249−252Cf reactions synthesizing isotopes of the superheavy element 118, Phys. Rev. C 86(6), 064607 (2012)
https://doi.org/10.1103/PhysRevC.86.064607
8 V. I. Zagrebaev, Y. Aritomo, M. G. Itkis, Y. T. Oganessian, and M. Ohta, Synthesis of superheavy nuclei: How accurately can we describe it and calculate the cross sections? Phys. Rev. C 65(1), 014607 (2001)
https://doi.org/10.1103/PhysRevC.65.014607
9 Z. H. Liu and J. D. Bao, Synthesis of superheavy element 120 via 50Ti+ACf hot fusion reactions, Phys. Rev. C 80(5), 054608 (2009)
https://doi.org/10.1103/PhysRevC.80.054608
10 G. F. Dai, L. Guo, E. G. Zhao, and S. G. Zhou, Effect of tensor force on dissipation dynamics in timedependent Hartree-Fock theory, Sci. China-Phys. Mech. Astron. 57(9), 1618 (2014)
https://doi.org/10.1007/s11433-014-5536-8
11 C. Shen, G. Kosenko, and Y. Abe, Two-step model of fusion for the synthesis of superheavy elements, Phys. Rev. C Nucl. Phys. 66(6), 061602(R) (2002)
12 J. J. Shen and C. W. Shen, Theoretical analysis of mass distribution of quasifission for 238U-induced reactions, Sci. China-Phys. Mech. Astron. 57(3), 453 (2014)
https://doi.org/10.1007/s11433-014-5392-6
13 Z. G. Gan, X. H. Zhou, M. H. Huang, Z. Q. Feng, and J. Q. Li, Predictions of synthesizing element 119 and 120., Sci. China-Phys. Mech. Astron. 54(S1 Supp.1), s61 (2011)
14 Z. Q. Feng, G. M. Jin, F. Fu, and J. Q. Li, Production cross sections of superheavy nuclei based on dinuclear system model, Nucl. Phys. A 771, 50 (2006)
https://doi.org/10.1016/j.nuclphysa.2006.03.002
15 K. P. Xie, W. Y. Ke, W. Y. Liang, X. M. Fu, C. F. Jiao, J. C. Pei, and F. R. Xu, Collective rotations of fission isomers in actinide nuclei, Sci. China-Phys. Mech. Astron. 57(2), 189 (2014)
https://doi.org/10.1007/s11433-013-5379-8
16 N. Wang, E. G. Zhao, and W. Scheid, Synthesis of superheavy nuclei with Z = 118 in hot fusion reactions, Phys. Rev. C 89(3), 037601 (2014)
https://doi.org/10.1103/PhysRevC.89.037601
17 N. Wang, E. G. Zhao, W. Scheid, and S. G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with trans-uranium targets., Phys. Rev. C 85(4), 041601(R) (2012)
18 J. Xu, B. A. Li, W. Q. Shen, and Y. Xia, Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions, Front. Phys. 10, 102501 (2015)
19 H. L. Liu and F. R. Xu, Calculations of electric quadrupole moments and charge radii for high-K isomers, Sci. China-Phys. Mech. Astron. 56(11), 2037 (2013)
https://doi.org/10.1007/s11433-013-5330-z
20 L. W. Chen, C. M. Ko, B. A. Li, and G. C. Yong, Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei, Front. Phys. 2(3), 357 (2007)
https://doi.org/10.1007/s11467-007-0037-0
21 A. M. Zhao, W. M. Sun, and H. S. Zong, Influence of thermalization on the initial condition for heavy ion collisions, Sci. China-Phys. Mech. Astron. 57(11), 2060 (2014)
https://doi.org/10.1007/s11433-014-5528-8
22 G. Wolschin and W. Noerenberg, Analysis of relaxation phenomena in heavy-ion collisions, Z. Phys. A: Hadrons Nucl 284, 209 (1978)
https://doi.org/10.1007/BF01411331
23 A. S. Jensen and C. Y. Wong, Coulomb distortion in heavyion reactions, Phys. Rev. C 1(4), 1321 (1970)
https://doi.org/10.1103/PhysRevC.1.1321
24 S. K. Samaddar, M. I. Sobel, J. N. De, S. I. A. Garpman, D. Sperber, M. Zielinska-Pfabe, and S. Møller, A classical dynamical model with shape deformation for strongly damped collisions, Nucl. Phys. A 332(1−2), 210 (1979)
https://doi.org/10.1016/0375-9474(79)90106-4
25 Q. F. Li, W. Zuo, W. F. Li, N. Wang, E. Zhao, J. Li, and W. Scheid, Deformation and orientation effects in the driving potential of the dinuclear mode, Eur. Phys. J. A 24(2), 223 (2005)
https://doi.org/10.1140/epja/i2004-10138-1
26 W. Li, N. Wang, F. Jia, H. Xu, W. Zuo, Q. Li, E. Zhao, J. Li, and W. Scheid. Particle transfer and fusion cross-section for super-heavy nuclei in dinuclear system, J. Phys. G 32(8), 1143 (2006)
https://doi.org/10.1088/0954-3899/32/8/006
27 N. Wang, E. G. Zhao, W. Scheid, and S. G. Zhou, Influence of octipole deformation and orientation on the potential energy surface in the di-nuclear system model, Chin. Phys. C 34(10), 1615 (2010)
https://doi.org/10.1088/1674-1137/34/10/012
28 N. Wang, L. Dou, E. G. Zhao, and W. Scheid, Nuclear hexadecapole deformation effects on the production of superheavy elements, Chin. Phys. Lett. 27(6), 062502 (2010)
https://doi.org/10.1088/0256-307X/27/6/062502
29 L. Dou, N. Wang, and E. G. Zhao, Nuclear dynamical quadrupole deformations in heavy-ion reactions, Chin. Phys. Lett. 28(12), 122401 (2011)
https://doi.org/10.1088/0256-307X/28/12/122401
30 J. Aichelin, Quantum molecular dynamicsa dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202(5−6), 233 (1991)
https://doi.org/10.1016/0370-1573(91)90094-3
31 N. Wang, X. Z. Wu, and Z. X. Li, Dynamic study of fusion reactions for 40;48Ca+ 90;96Zr around the Coulomb barrier, Phys. Rev. C 67(2), 024604 (2003)
https://doi.org/10.1103/PhysRevC.67.024604
32 X. T. Lu, D. X. Jiang, and Y. L. Ye, Nuclear Physics, Beijing: Atomic Energy Publishing House, 2000
[1] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[2] CHEN Lie-wen, KO Che Ming, LI Bao-an, YONG Gao-chan. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei[J]. Front. Phys. , 2007, 2(3): 327-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed