Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (1) : 111201    https://doi.org/10.1007/s11467-015-0518-5
REVIEW ARTICLE
Importance of proper renormalization scale-setting for QCD testing at colliders
Xing-Gang Wu1,*(),Sheng-Quan Wang1,2,*(),Stanley J. Brodsky3,*()
1. Department of Physics, Chongqing University, Chongqing 401331, China
2. School of Science, Guizhou Minzu University, Guiyang 550025, China
3. SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94039, USA
 Download: PDF(350 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived from the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the NC → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower energies, the angular distributions of heavy quarks can be used to obtain a direct determination of the heavy quark potential. A discussion of the angular distributions of massive quarks and leptons is also presented, including the fermionic component of the two-loop corrections to the electromagnetic form factors. These results demonstrate that the application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predictions, thus increasing collider sensitivity to possible new physics beyond the Standard Model.

Keywords QCD      proper renormalization scale-setting      PMC      high-energy colliders     
Fund: 
Corresponding Author(s): Xing-Gang Wu,Sheng-Quan Wang,Stanley J. Brodsky   
Online First Date: 25 November 2015    Issue Date: 01 February 2016
 Cite this article:   
Stanley J. Brodsky,Xing-Gang Wu,Sheng-Quan Wang. Importance of proper renormalization scale-setting for QCD testing at colliders[J]. Front. Phys. , 2016, 11(1): 111201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0518-5
https://academic.hep.com.cn/fop/EN/Y2016/V11/I1/111201
1 X. G. Wu, S. J. Brodsky, and M. Mojaza, The renormalization scale-setting problem in QCD, Prog. Part. Nucl. Phys.72, 44 (2013)
https://doi.org/10.1016/j.ppnp.2013.06.001
2 M. Gell-Mann and F. E. Low, Quantum electrodynamics at small distances, Phys. Rev. 95, 1300 (1954)
https://doi.org/10.1103/PhysRev.95.1300
3 S. J. Brodsky and X. G. Wu, Scale setting using the extended renormalization group and the principle of maximum conformality: The QCD coupling constant at four loops, Phys. Rev. D 85, 034038 (2012) [Phys. Rev. D 86, 079903 (2012)]
https://doi.org/10.1103/PhysRevD.85.034038
4 S. J. Brodsky and X. G. Wu, Application of the principle of maximum conformality to top-pair production, Phys. Rev. D 86, 014021 (2012) [Phys. Rev. D 87, 099902 (2013)]
https://doi.org/10.1103/PhysRevD.86.014021
5 S. J. Brodsky and X. G. Wu, Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality, Phys. Rev. Lett. 109, 042002 (2012)
https://doi.org/10.1103/PhysRevLett.109.042002
6 S. J. Brodsky and L. Di Giustino, Setting the renormalization scale in QCD: The principle of maximum conformality, Phys. Rev. D 86, 085026 (2012)
https://doi.org/10.1103/PhysRevD.86.085026
7 M. Mojaza, S. J. Brodsky, and X. G. Wu, Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD, Phys. Rev. Lett. 110, 192001 (2013)
https://doi.org/10.1103/PhysRevLett.110.192001
8 S. J. Brodsky, M. Mojaza, and X. G. Wu, Systematic scalesetting to all orders: The principle of maximum conformality and commensurate scale relations, Phys. Rev. D 89, 014027 (2014)
https://doi.org/10.1103/PhysRevD.89.014027
9 X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma, S. J. Brodsky, and M. Mojaza, Renormalization group invariance and optimal QCD renormalization scale-setting, arXiv:1405.3196 [hep-ph]
10 S. J. Brodsky and X. G. Wu, Self-consistency requirements of the renormalization group for setting the renormalization scale, Phys. Rev. D 86, 054018 (2012)
https://doi.org/10.1103/PhysRevD.86.054018
11 S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D 28, 228 (1983)
https://doi.org/10.1103/PhysRevD.28.228
12 S. J. Brodsky, V. S. Fadin, V. T. Kim, L. N. Lipatov, and G. B. Pivovarov, The QCD pomeron with optimal renormalization, JETP Lett. 70, 155 (1999)
https://doi.org/10.1134/1.568145
13 M. Hentschinski, A. Sabio Vera, and C. Salas, Hard to soft pomeron transition in small-x deep inelastic scattering data using optimal renormalization, Phys. Rev. Lett. 110, 041601 (2013)
https://doi.org/10.1103/PhysRevLett.110.041601
14 X. C. Zheng, X. G. Wu, S. Q. Wang, J. M. Shen, and Q. L. Zhang, Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy, J. High Energy Phys. 1310, 117 (2013)
https://doi.org/10.1007/JHEP10(2013)117
15 F. Caporale, D. Y. Ivanov, B. Murdaca, and A. Papa, Brodsky–Lepage–Mackenzie optimal renormalization scale setting for semihard processes, Phys. Rev. D 91, 114009 (2015)
https://doi.org/10.1103/PhysRevD.91.114009
16 S. Q. Wang, X. G. Wu, X. C. Zheng, G. Chen, and J. M. Shen, An analysis of H → γγ up to three-loop QCD corrections, J. Phys. G 41, 075010 (2014)
https://doi.org/10.1088/0954-3899/41/7/075010
17 S. Q. Wang, X. G. Wu, X. C. Zheng, J. M. Shen, and Q. L. Zhang, The Higgs boson inclusive decay channels H → bb¯ and H → ggup to four-loop level, Eur. Phys. J. C 74, 2825 (2014)
https://doi.org/10.1140/epjc/s10052-014-2825-3
18 D. M. Zeng, S. Q. Wang, X. G. Wu, and J. M. Shen, The Higgs–Boson decay H → ggto order α5s under the mMOMscheme, arXiv: 1507.03222 [hep-ph]
19 S. Q. Wang, X. G. Wu, and S. J. Brodsky, Reanalysis of the higher order perturbative QCD corrections to hadronic Z decays using the principle of maximum conformality, Phys.Rev. D 90, 037503 (2014)
https://doi.org/10.1103/PhysRevD.90.037503
20 J. M. Shen, X. G. Wu, H. H. Ma, H. Y. Bi, and S. Q. Wang, Renormalization group improved pQCD prediction for Ɣ(1S) leptonic decay, J. High Energy Phys. 1506, 169(2015)
https://doi.org/10.1007/JHEP06(2015)169
21 S. J. Brodsky and X. G. Wu, Application of the principle of maximum conformality to the top-quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 85, 114040 (2012)
https://doi.org/10.1103/PhysRevD.85.114040
22 S. Q. Wang, X. G. Wu, Z. G. Si, and S. J. Brodsky, Application of the principle of maximum conformality to the top-quark charge asymmetry at the LHC, Phys. Rev. D 90, 114034 (2014)
https://doi.org/10.1103/PhysRevD.90.114034
23 S. Q. Wang, X. G. Wu, Z. G. Si, and S. J. Brodsky, Predictions for the top-quark forward-backward asymmetry at high invariant pair mass using the principle of maximum conformality, arXiv: 1508.03739 [hep-ph]
24 C. F. Qiao, R. L. Zhu, X. G. Wu, and S. J. Brodsky, A possible solution to the B→ ππ puzzle using the principle of maximum conformality, Phys. Lett. B 748, 422 (2015) [arXiv: 1408.1158 [hep-ph]]
https://doi.org/10.1016/j.physletb.2015.07.044
25 H. Baer, et al., The International Linear Collider Technical Design Report- Volume 2: Physics, arXiv: 1306.6352 [hep-ph]
26 J. P. Ma and Z. X. Zhang, The super Z-factory group, Sci. China: Phys. Mech. Astron. 53, 1947 (2010)
27 P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn and J. Rittinger, Complete O(α4s) QCD corrections to hadronic Z decays, Phys. Rev. Lett. 108, 222003 (2012)
https://doi.org/10.1103/PhysRevLett.108.222003
28 P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Order O(α4s) QCD corrections to Zand tau decays, Phys. Rev. Lett. 101, 012002 (2008)
https://doi.org/10.1103/PhysRevLett.101.012002
29 P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Adler function, Bjorken sum rule, and the Crewther relation to order O(α4s) in a general gauge theory, Phys. Rev. Lett. 104, 132004 (2010)
https://doi.org/10.1103/PhysRevLett.104.132004
30 P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, and J. Rittinger, Adler function, sum rules and Crewther relation of order O(α4s): The singlet case, Phys. Lett. B 714, 62 (2012)
https://doi.org/10.1016/j.physletb.2012.06.052
31 M. Czakon, P. Fiedler, and A. Mitov, Resolving the Tevatron top quark forward-backward asymmetry puzzle, Phys. Rev. Lett. 115, 052001 (2015)
https://doi.org/10.1103/PhysRevLett.115.052001
32 M. Neubert, Scale setting in QCD and the momentum flow in Feynman diagrams, Phys. Rev. D 51, 5924 (1995)
https://doi.org/10.1103/PhysRevD.51.5924
33 M. Beneke and V. M. Braun, Naive non-Abelianization and resummation of fermion bubble chains, Phys. Lett. B 348, 513 (1995)
https://doi.org/10.1016/0370-2693(95)00184-M
34 S. J. Brodsky, A. H. Hoang, J. H. Kuhn, and T. Teubner, Angular distributions of massive quarks and leptons close to threshold, Phys. Lett. B 359, 355 (1995)
https://doi.org/10.1016/0370-2693(95)01070-7
35 H. Y. Bi, X. G. Wu, Y. Ma, H. H. Ma, S. J. Brodsky, and M. Mojaza, Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale, Phys. Lett. B 748, 13 (2015)
https://doi.org/10.1016/j.physletb.2015.06.056
36 T. A. Aaltonen, et al. (CDF and D0 Collaborations), Combination of measurements of the top-quark pair production cross section from the Tevatron Collider, Phys. Rev. D 89, 072001 (2014)
https://doi.org/10.1103/PhysRevD.89.072001
37 S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, Light-front holographic QCD and emerging confinement, Phys. Rep. 584, 1 (2015)
https://doi.org/10.1016/j.physrep.2015.05.001
38 V. M. Abazov, et al. (D0 Collaboration), Measurement of the forward-backward asymmetry in top quark-antiquark production in ppbar collisions using the lepton+jets channel, Phys. Rev. D 90, 072011 (2014)
https://doi.org/10.1103/PhysRevD.90.072011
39 V. M. Abazov, et al. (D0 Collaboration), Simultaneous measurement of forward-backward asymmetry and top polarization in dilepton final states from tt¯ production at the Tevatron, arXiv: 1507.05666 [hep-ex].
40 T. Aaltonen, et al. (CDF Collaboration), Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83, 112003 (2011)
https://doi.org/10.1103/PhysRevD.83.112003
41 T. Aaltonen, et al. (CDF Collaboration), Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87, 092002 (2013)
https://doi.org/10.1103/PhysRevD.87.092002
42 S. J. Brodsky and H. J. Lu, Commensurate scale relations in quantum chromodynamics, Phys. Rev. D 51, 3652 (1995)
https://doi.org/10.1103/PhysRevD.51.3652
43 A. H. Hoang, J. H. Kuhn, and T. Teubner, Radiation of light fermions in heavy fermion production, Nucl. Phys. B 452, 173 (1995)
https://doi.org/10.1016/0550-3213(95)00308-F
[1] Shan Cheng, Zhen-Jun Xiao. The PQCD approach towards to next-to-leading order: A short review[J]. Front. Phys. , 2021, 16(2): 24201-.
[2] Tetsuo Hatsuda. Lattice quantum chromodynamics and baryon-baryon interactions[J]. Front. Phys. , 2018, 13(6): 132105-.
[3] H. Sazdjian. Gauge-invariant approach to quark dynamics[J]. Front. Phys. , 2016, 11(1): 111101-.
[4] Li-Sheng Geng. Recent development in SU(3) covariant baryon chiral perturbation theory[J]. Front. Phys. , 2013, 8(3): 328-348.
[5] Wei-Xing Ma, Li-Juan Zhou, Tong-Quan Yuan, Jin-Song Peng, Xiao Lu, Ji-Huan Pan, Guang-Xiong Peng, Cheng-Ju Meng. Theoretical prediction of cosmological constant Λ in Veneziano ghost theory of QCD[J]. Front. Phys. , 2012, 7(4): 471-480.
[6] Ji-huan PAN(潘继环), Li-juan ZHOU(周丽娟), Wei-xing MA(马维兴). K±p elastic scattering in the QCD inspired eikonalized model[J]. Front Phys Chin, 2010, 5(2): 215-218.
[7] Ji-huan PAN (潘继环), Li-juan ZHOU (周丽娟), Wei-xing MA (马维兴), . Diffractive upsilon photo-production off the proton in the QCD inspired model[J]. Front. Phys. , 2009, 4(4): 534-548.
[8] Xue-qian LI (李光潜), Xiang LIU (刘翔), Zheng-tao WEI(魏正涛). Charm physics —— A field full of challenges and opportunities[J]. Front Phys Chin, 2009, 4(1): 49-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed