|
|
Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate |
Shu-Yuan Wu (吴淑媛)1,2,Hong-Hua Zhong (钟宏华)1,2,3,Jia-Hao Huang (黄嘉豪)1,2,Xi-Zhou Qin (秦锡洲)1,2,Chao-Hong Lee (李朝红)1,2,*( ) |
1. School of Physics and Astronomy, Sun Yat-Sen University, Guangzhou 510275, China 2. State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China 3. Department of Physics, Jishou University, Jishou 416000, China |
|
|
Abstract We investigate the fragmentation in a two-mode Bose–Einstein condensate with Josephson coupling. We explore how the fragmentation and entropy of the ground state depend on the intermode asymmetry and interparticle interactions. Owing to the interplay between the asymmetry and the interactions, a sequence of notches and plateaus in the fragmentation appears with the single-atom tunneling and interaction blockade, respectively. We then analyze the dynamical properties of the fragmentation in three typical quenches of the asymmetry: linear, sudden, and periodic quenches. In a linear quench, the final state is a fragmented state due to the sequential Landau–Zener tunneling, which can be analytically explained by applying the two-level Landau–Zener formula for each avoided level crossing. In a sudden quench, the fragmentation exhibits persistent fluctuations that sensitively depend on the interparticle interactions and intermode coupling. In a periodic quench, the fragmentation is modulated by the periodic driving, and a suitable modulation may allow one to control the fragmentation.
|
Keywords
fragmentation
two-mode BEC
quantum quench
|
Corresponding Author(s):
Chao-Hong Lee (李朝红)
|
Online First Date: 22 December 2015
Issue Date: 08 June 2016
|
|
1 |
O. Penrose and L. Onsager, Bose˗Einstein condensation and liquid helium, Phys. Rev. 104(3), 576 (1956)
https://doi.org/10.1103/PhysRev.104.576
|
2 |
A. J. Leggett, Bose˗Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73(2), 307 (2001)
https://doi.org/10.1103/RevModPhys.73.307
|
3 |
P. Bader and U. R. Fischer, Fragmented many-body ground states for scalar Bosons in a single trap, Phys. Rev. Lett. 103(6), 060402 (2009)
https://doi.org/10.1103/PhysRevLett.103.060402
|
4 |
U. R. Fischer and B. Xiong, Robustness of fragmented condensate many-body states for continuous distribution amplitudes in Fock space, Phys. Rev. A 88(5), 053602 (2013)
https://doi.org/10.1103/PhysRevA.88.053602
|
5 |
A. I. Streltsov, L. S. Cederbaum, and N. Moiseyev, Ground-state fragmentation of repulsive Bose˗Einstein condensates in double-trap potentials, Phys. Rev. A 70(5), 053607 (2004)
https://doi.org/10.1103/PhysRevA.70.053607
|
6 |
R. Kanamoto, H. Saito, and M. Ueda, Quantum phase transition in one-dimensional Bose˗Einstein condensates with attractive interactions, Phys. Rev. A 67(1), 013608 (2003)
https://doi.org/10.1103/PhysRevA.67.013608
|
7 |
C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Production of two overlapping Bose˗Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78(4), 586 (1997)
https://doi.org/10.1103/PhysRevLett.78.586
|
8 |
D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, Optical confinement of a Bose˗Einstein condensate, Phys. Rev. Lett. 80(10), 2027 (1998)
https://doi.org/10.1103/PhysRevLett.80.2027
|
9 |
T. L. Ho and S. K. Yip, Fragmented and single condensate ground states of spin-1 Bose gas, Phys. Rev. Lett. 84(18), 4031 (2000)
https://doi.org/10.1103/PhysRevLett.84.4031
|
10 |
O. E. Müstecaplıoğlu, M. Zhang, S. Yi, L. You, and C. P. Sun, Dynamic fragmentation of a spinor Bose˗Einstein condensate, Phys. Rev. A 68(6), 063616 (2003)
https://doi.org/10.1103/PhysRevA.68.063616
|
11 |
A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard, and W. Ketterle, Sodium Bose˗Einstein condensates in the in the F= 2 state in a large-volume optical trap, Phys. Rev. Lett. 90(9), 090401 (2003)
https://doi.org/10.1103/PhysRevLett.90.090401
|
12 |
H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, Dynamics of F= 2 spinor Bose˗Einstein condensates, Phys. Rev. Lett. 92(4), 040402 (2004)
https://doi.org/10.1103/PhysRevLett.92.040402
|
13 |
T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, Magnetic field dependence of the dynamics of 87Rb spin-2 Bose˗Einstein condensates, Phys. Rev. A 69(6), 063604 (2004)
https://doi.org/10.1103/PhysRevA.69.063604
|
14 |
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose˗Einstein condensate, Nature 449(7162), 579 (2007)
https://doi.org/10.1038/nature06186
|
15 |
R. W. Spekkens and J. E. Sipe, Spatial fragmentation of a Bose˗Einstein condensate in a double-well potential, Phys. Rev. A 59(5), 3868 (1999)
https://doi.org/10.1103/PhysRevA.59.3868
|
16 |
L. Cederbaum and A. Streltsov, Best mean-field for condensates, Phys. Lett. A 318(6), 564 (2003)
https://doi.org/10.1016/j.physleta.2003.09.058
|
17 |
E. J. Mueller, T. L. Ho, M. Ueda, and G. Baym, Fragmentation of Bose˗Einstein condensates, Phys. Rev. A 74(3), 033612 (2006)
https://doi.org/10.1103/PhysRevA.74.033612
|
18 |
T. L. Ho and C. Ciobanu, The Schrödinger cat family in attractive Bose gases, J. Low Temp. Phys. 135(3-4), 257 (2004)
https://doi.org/10.1023/B:JOLT.0000024552.87247.eb
|
19 |
Q. Zhu, Q. Zhang, and B. Wu, Extended two-site Bose–Hubbard model with pair tunneling: Spontaneous symmetry breaking, effective ground state and fragmentation, J. Phys. At. Mol. Opt. Phys. 48(4), 045301 (2015)
https://doi.org/10.1088/0953-4075/48/4/045301
|
20 |
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Universality of fragmentation in the Schrödinger dynamics of bosonic Josephson junctions, Phys. Rev. A 89(2), 023602 (2014)
https://doi.org/10.1103/PhysRevA.89.023602
|
21 |
L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose˗Einstein condensate, Nature 443(7109), 312 (2006)
https://doi.org/10.1038/nature05094
|
22 |
S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature 449(7160), 324 (2007)
https://doi.org/10.1038/nature06149
|
23 |
Y. A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E. Altman, Many-body Landau˗Zener dynamics in coupled one-dimensional Bose liquids, Nat. Phys. 7(1), 61 (2011)
https://doi.org/10.1038/nphys1801
|
24 |
D. Chen, M. White, C. Borries, and B. DeMarco, Quantum quench of an atomic Mott insulator, Phys. Rev. Lett. 106(23), 235304 (2011)
https://doi.org/10.1103/PhysRevLett.106.235304
|
25 |
F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, M. Grobner, A. J. Daley, and H. C. Nägerl, Observation of many-body dynamics in long-range tunneling after a quantum quench, Science 344(6189), 1259 (2014)
https://doi.org/10.1126/science.1248402
|
26 |
C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose˗Einstein condensates, Phys. Rev. A 64(5), 053604 (2001)
https://doi.org/10.1103/PhysRevA.64.053604
|
27 |
K. Sengupta, S. Powell, and S. Sachdev, Quench dynamics across quantum critical points, Phys. Rev. A 69(5), 053616 (2004)
https://doi.org/10.1103/PhysRevA.69.053616
|
28 |
P. Calabrese and J. Cardy, Time dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96(13), 136801 (2006)
https://doi.org/10.1103/PhysRevLett.96.136801
|
29 |
C. Kollath, A. M. Läuchli, and E. Altman, Quench dynamics and nonequilibrium phase diagram of the Bose-Hubbard model, Phys. Rev. Lett. 98(18), 180601 (2007)
https://doi.org/10.1103/PhysRevLett.98.180601
|
30 |
G. Roux, Quenches in quantum many-body systems: One-dimensional Bose˗Hubbard model reexamined, Phys. Rev. A 79(2), 021608 (2009)
https://doi.org/10.1103/PhysRevA.79.021608
|
31 |
B. Sciolla and G. Biroli, Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose˗Hubbard model, Phys. Rev. Lett. 105(22), 220401 (2010)
https://doi.org/10.1103/PhysRevLett.105.220401
|
32 |
J. Dziarmaga and M. Tylutki, Excitation energy after a smooth quench in a Luttinger liquid, Phys. Rev. B 84(21), 214522 (2011)
https://doi.org/10.1103/PhysRevB.84.214522
|
33 |
D. Poletti and C. Kollath, Slow quench dynamics of periodically driven quantum gases, Phys. Rev. A 84(1), 013615 (2011)
https://doi.org/10.1103/PhysRevA.84.013615
|
34 |
F. H. L. Essler, S. Evangelisti, and M. Fagotti, Dynamical correlations after a quantum quench, Phys. Rev. Lett. 109(24), 247206 (2012)
https://doi.org/10.1103/PhysRevLett.109.247206
|
35 |
X. Yin and L. Radzihovsky, Quench dynamics of a strongly interacting resonant Bose gas, Phys. Rev. A 88(6), 063611 (2013)
https://doi.org/10.1103/PhysRevA.88.063611
|
36 |
J. S. Bernier, R. Citro, C. Kollath, and E. Orignac, Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas, Phys. Rev. Lett. 112(6), 065301 (2014)
https://doi.org/10.1103/PhysRevLett.112.065301
|
37 |
E. J. Torres-Herrera and L. F. Santos, Quench dynamics of isolated many-body quantum systems, Phys. Rev. A 89(4), 043620 (2014)
https://doi.org/10.1103/PhysRevA.89.043620
|
38 |
M. Eckstein, M. Kollar, and P. Werner, Thermalization after an interaction quench in the Hubbard model, Phys. Rev. Lett. 103(5), 056403 (2009)
https://doi.org/10.1103/PhysRevLett.103.056403
|
39 |
M. Rigol, Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett. 103(10), 100403 (2009)
https://doi.org/10.1103/PhysRevLett.103.100403
|
40 |
M. Cazalilla and M. Rigol, Focus on dynamics and thermalization in isolated quantum many-body systems, New J. Phys. 12(5), 055006 (2010)
https://doi.org/10.1088/1367-2630/12/5/055006
|
41 |
A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83(3), 863 (2011)
https://doi.org/10.1103/RevModPhys.83.863
|
42 |
A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized thermalization in an integrable lattice system, Phys. Rev. Lett. 106(14), 140405 (2011)
https://doi.org/10.1103/PhysRevLett.106.140405
|
43 |
C. A. Parra-Murillo, J. Madroñero, and S. Wimberger, Quantum diffusion and thermalization at resonant tunneling, Phys. Rev. A 89(5), 053610 (2014)
https://doi.org/10.1103/PhysRevA.89.053610
|
44 |
W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a quantum phase transition, Phys. Rev. Lett. 95(10), 105701 (2005)
https://doi.org/10.1103/PhysRevLett.95.105701
|
45 |
C. Lee, Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled two-component Bose˗Einstein condensate, Phys. Rev. Lett. 102(7), 070401 (2009)
https://doi.org/10.1103/PhysRevLett.102.070401
|
46 |
J. Dziarmaga and M. M. Rams, Dynamics of an inhomogeneous quantum phase transition, New J. Phys. 12(5), 055007 (2010)
https://doi.org/10.1088/1367-2630/12/5/055007
|
47 |
J. Dziarmaga, M. Tylutki, and W. H. Zurek, Quench from Mott insulator to superfluid, Phys. Rev. B 86(14), 144521 (2012)
https://doi.org/10.1103/PhysRevB.86.144521
|
48 |
F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, A. J. Daley, and H. C. Nägerl, Quantum quench in an atomic one-dimensional Ising chain, Phys. Rev. Lett. 111(5), 053003 (2013)
https://doi.org/10.1103/PhysRevLett.111.053003
|
49 |
U. Schneider, L. Hackermuller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch, Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nat. Phys. 8(3), 213 (2012)
https://doi.org/10.1038/nphys2205
|
50 |
M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schausz, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Light-cone-like spreading of correlations in a quantum many-body system, Nature 481(7382), 484 (2012)
https://doi.org/10.1038/nature10748
|
51 |
J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Expansion dynamics of interacting Bosons in homogeneous lattices in one and two dimensions, Phys. Rev. Lett. 110(20), 205301 (2013)
https://doi.org/10.1103/PhysRevLett.110.205301
|
52 |
P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, Quasiparticle engineering and entanglement propagation in a quantum many-body system, Nature 511(7508), 202 (2014)
https://doi.org/10.1038/nature13461
|
53 |
G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose˗Einstein condensate in a double-well potential, Phys. Rev. A 55(6), 4318 (1997)
https://doi.org/10.1103/PhysRevA.55.4318
|
54 |
X. X. Yang and Y. Wu, SU(2) coherent state description of two-mode Bose–Einstein condensates, Commum. Theor. Phys. 37(5), 539 (2002)
https://doi.org/10.1088/0253-6102/37/5/539
|
55 |
L. M. Kuang, J. H. Li, and B. Hu, Polarization and decoherence in a two-component Bose–Einstein condensate, J. Opt. B 4(5), 295 (2002)
https://doi.org/10.1088/1464-4266/4/5/311
|
56 |
A. H. Zeng and L. M. Kuang, Influence of quantum entanglement on quantum tunnelling between two atomic Bose˗Einstein condensates, Phys. Lett. A 338(3˗5), 323 (2005)
|
57 |
C. Lee, Adiabatic Mach˗Zehnder interferometry on a quantized Bose˗Josephson junction, Phys. Rev. Lett. 97(15), 150402 (2006)
https://doi.org/10.1103/PhysRevLett.97.150402
|
58 |
D. Witthaut, F. Trimborn, and S. Wimberger, Dissipation induced coherence of a two-mode Bose˗Einstein condensate, Phys. Rev. Lett. 101(20), 200402 (2008)
https://doi.org/10.1103/PhysRevLett.101.200402
|
59 |
X. X. Yang and Y. Wu, Effective two-state model and NOON states for double-well Bose˗Einstein condensates in strong-interaction regime, Commum. Theor. Phys. 52(2), 244 (2009)
https://doi.org/10.1088/0253-6102/52/2/10
|
60 |
F. Trimborn, D. Witthaut, V. Kegel, and H. Korsch, Nonlinear Landau˗Zener tunneling in quantum phase space, New J. Phys. 12(5), 053010 (2010)
https://doi.org/10.1088/1367-2630/12/5/053010
|
61 |
C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)
https://doi.org/10.1007/s11467-011-0228-6
|
62 |
S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose˗Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
https://doi.org/10.1007/s11467-013-0288-x
|
63 |
A. Sinatra, J. C. Dornstetter, and Y. Castin, Spin squeezing in Bose˗Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys. 7(1), 86 (2012)
https://doi.org/10.1007/s11467-011-0219-7
|
64 |
R. Gati and M. K. Oberthaler, A bosonic Josephson junction, J. Phys. At. Mol. Opt. Phys. 40(10), R61 (2007)
https://doi.org/10.1088/0953-4075/40/10/R01
|
65 |
W. D. Li, Y. Zhang, and J. Q. Liang, Energy-band structure and intrinsic coherent properties in two weakly linked Bose˗Einstein condensates, Phys. Rev. A 67(6), 065601 (2003)
https://doi.org/10.1103/PhysRevA.67.065601
|
66 |
C. Lee, L. B. Fu, and Y. S. Kivshar, Many-body quantum coherence and interaction blockade in Josephson-linked Bose˗Einstein condensates, Europhys. Lett. 81(6), 60006 (2008)
https://doi.org/10.1209/0295-5075/81/60006
|
67 |
D. Raventós, T. Graß, and B. Juliá-Díaz, Cold bosons in optical lattices: Correlations, localization, and fragmentation, arXiv: 1410.7280
|
68 |
B. Juli’a-Diaz, D. Dagnino, M. Lewenstein, J. Martorell, and A. Polls, Macroscopic self-trapping in Bose˗Einstein condensates: Analysis of a dynamical quantum phase transition, Phys. Rev. A 81(2), 023615 (2010)
https://doi.org/10.1103/PhysRevA.81.023615
|
69 |
C. Zener, Non-Adiabatic crossing of energy levels, Proceedings of the Royal Society of London Series A 137, 696 (1932)
https://doi.org/10.1098/rspa.1932.0165
|
70 |
H. Zhong, Q. Xie, J. Huang, X. Qin, H. Deng, J. Xu, and C. Lee, Photon-induced sideband transitions in a manybody Landau˗Zener process, Phys. Rev. A 90(2), 023635 (2014)
https://doi.org/10.1103/PhysRevA.90.023635
|
71 |
E. J. Torres-Herrera and L. F. Santos, Non-exponential fidelity decay in isolated interacting quantum systems, Phys. Rev. A 90(3), 033623 (2014)
https://doi.org/10.1103/PhysRevA.90.033623
|
72 |
A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, Analog of photon-assisted tunneling in a Bose˗Einstein condensate, Phys. Rev. Lett. 95(20), 200401 (2005)
https://doi.org/10.1103/PhysRevLett.95.200401
|
73 |
T. Jinasundera, C. Weiss, and M. Holthaus, Manyparticle tunnelling in a driven Bosonic Josephson junction, Chem. Phys. 322(1˗2), 118 (2006)
|
74 |
M. Grifoni and P. Hänggi, Driven quantum tunneling, Phys. Rep. 304(5˗6), 229 (1998)
|
75 |
G. Liu, N. Hao, S. L. Zhu, and W. M. Liu, Topological superfluid transition induced by a periodically driven optical lattice, Phys. Rev. A 86(1), 013639 (2012)
https://doi.org/10.1103/PhysRevA.86.013639
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|