Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (3) : 110304    https://doi.org/10.1007/s11467-016-0556-7
REVIEW ARTICLE
Quantum superreplication of states and gates
Giulio Chiribella(),Yuxiang Yang
Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
 Download: PDF(400 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/N2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/N2, and iii) a protocol that generates O(N2) nearly perfect copies of a generic pure state U|0>while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M2/N2.

Keywords quantum cloning      quantum metrology      quantum superreplication      Heisenberg limit      quantum networks     
Corresponding Author(s): Giulio Chiribella   
Online First Date: 31 March 2016    Issue Date: 08 June 2016
 Cite this article:   
Giulio Chiribella,Yuxiang Yang. Quantum superreplication of states and gates[J]. Front. Phys. , 2016, 11(3): 110304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0556-7
https://academic.hep.com.cn/fop/EN/Y2016/V11/I3/110304
1 W. Wootters and W. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)
https://doi.org/10.1038/299802a0
2 D. Dieks, Communication by EPR devices, Phys. Lett. A 92(6), 271 (1982)
https://doi.org/10.1016/0375-9601(82)90084-6
3 V. Scarani, S. Iblisdir, N. Gisin, and A. Acin, Quantum cloning, Rev. Mod. Phys. 77(4), 1225 (2005)
https://doi.org/10.1103/RevModPhys.77.1225
4 N. J. Cerf and J. Fiurášek, Optical quantum cloning, Progress in Optics 49, 455 (2006)
https://doi.org/10.1016/S0079-6638(06)49006-5
5 C. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in: Conference on Computers, Systems and Signal Processing (Bangalore, India), pp 175–179, 1984
6 A. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
7 S. Wiesner, Conjugate coding, ACM Sigact News 15(1), 78 (1983)
https://doi.org/10.1145/1008908.1008920
8 M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
9 V. Bužek and M. Hillery, Quantum copying: Beyond the no-cloning theorem, Phys. Rev. A 54(3), 1844 (1996)
https://doi.org/10.1103/PhysRevA.54.1844
10 N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153 (1997)
https://doi.org/10.1103/PhysRevLett.79.2153
11 D. Bruss, A. Ekert, and C. Macchiavello, Optimal universal quantum cloning and state estimation, Phys. Rev. Lett. 81(12), 2598 (1998)
https://doi.org/10.1103/PhysRevLett.81.2598
12 J. Bae and A. Acín, Asymptotic quantum cloning is state estimation, Phys. Rev. Lett. 97(3), 030402 (2006)
https://doi.org/10.1103/PhysRevLett.97.030402
13 G. Chiribella and G. M. D’Ariano, Quantum information becomes classical when distributed to many users, Phys. Rev. Lett. 97(25), 250503 (2006)
https://doi.org/10.1103/PhysRevLett.97.250503
14 G. Chiribella, On quantum estimation, quantum cloning and finite quantum de Finetti theorems, in: Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, Volume 6519, pp 9-25, Springer, 2011
https://doi.org/10.1007/978-3-642-18073-6_2
15 G. Chiribella and Y. Yang, Optimal asymptotic cloning machines, New J. Phys. 16(6), 063005 (2014)
https://doi.org/10.1088/1367-2630/16/6/063005
16 S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, Criteria for continuous-variable quantum teleportation, J. Mod. Opt. 47(2-3), 267 (2000)
https://doi.org/10.1080/09500340008244041
17 K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, Quantum benchmark for storage and transmission of coherent states, Phys. Rev. Lett. 94(15), 150503 (2005)
https://doi.org/10.1103/PhysRevLett.94.150503
18 G. Adesso and G. Chiribella, Quantum benchmark for teleportation and storage of squeezed states, Phys. Rev. Lett. 100(17), 170503 (2008)
https://doi.org/10.1103/PhysRevLett.100.170503
19 G. Chiribella and J. Xie, Optimal design and quantum benchmarks for coherent state amplifiers, Phys. Rev. Lett. 110(21), 213602 (2013)
https://doi.org/10.1103/PhysRevLett.110.213602
20 G. Chiribella and G. Adesso, Quantum benchmarks for pure single-mode Gaussian states, Phys. Rev. Lett. 112(1), 010501 (2014)
https://doi.org/10.1103/PhysRevLett.112.010501
21 H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu, Quantum cloning machines and the applications, Phys. Rep. 544(3), 241 (2014)
https://doi.org/10.1016/j.physrep.2014.06.004
22 L. M. Duan and G. C. Guo, Probabilistic cloning and identification of linearly independent quantum states, Phys. Rev. Lett. 80(22), 4999 (1998)
https://doi.org/10.1103/PhysRevLett.80.4999
23 J. Fiurášek, Optimal probabilistic cloning and purification of quantum states, Phys. Rev. A 70(3), 032308 (2004)
https://doi.org/10.1103/PhysRevA.70.032308
24 T. Ralph and A. Lund, Nondeterministic noiseless linear amplification of quantum systems, in: Ninth Inter-national Conference on Quantum Communication, Measurement and Computing (QCMC), Volume 1110, pp 155-160, AIP Publishing, 2009
https://doi.org/10.1063/1.3131295
25 G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4(5), 316 (2010)
https://doi.org/10.1038/nphoton.2010.35
26 F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, Implementation of a nondeterministic optical noiseless amplifier, Phys. Rev. Lett. 104(12), 123603 (2010)
https://doi.org/10.1103/PhysRevLett.104.123603
27 M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, Noise-powered probabilistic concentration of phase information, Nat. Phys. 6(10), 767 (2010)
https://doi.org/10.1038/nphys1743
28 A. Zavatta, J. Fiurášek, and M. Bellini, A high-fidelity noiseless amplifier for quantum light states, Nat. Photonics 5(1), 52 (2011)
https://doi.org/10.1038/nphoton.2010.260
29 G. Chiribella, Y. Yang, and A. C.C. Yao, Quantum replication at the Heisenberg limit, Nat. Commun. 4(2915) (2013)
https://doi.org/10.1038/ncomms3915
30 V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beating the standard quantum limit, Science 306(5700), 1330 (2004)
https://doi.org/10.1126/science.1104149
31 A. Winter, Coding theorem and strong converse for quantum channels, IEEE Transactions on Information Theory 45(7), 2481 (1999)
https://doi.org/10.1109/18.796385
32 G. Chiribella, G. M. D’Ariano, and P. Perinotti, Optimal cloning of unitary transformation, Phys. Rev. Lett. 101(18), 180504 (2008)
https://doi.org/10.1103/PhysRevLett.101.180504
33 W. Dür, P. Sekatski, and M. Skotiniotis, Deterministic superreplication of one-parameter unitary transformations, Phys. Rev. Lett. 114(12), 120503 (2015)
https://doi.org/10.1103/PhysRevLett.114.120503
34 G. Chiribella, Y. Yang, and C. Huang, Universal superreplication of unitary gates, Phys. Rev. Lett. 114(12), 120504 (2015)
https://doi.org/10.1103/PhysRevLett.114.120504
35 G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, Efficient use of quantum resources for the transmission of a reference frame, Phys. Rev. Lett. 93(18), 180503 (2004)
https://doi.org/10.1103/PhysRevLett.93.180503
36 E. Bagan, M. Baig, and R. Munoz-Tapia, Quantum reverse engineering and reference-frame alignment without nonlocal correlations, Phys. Rev. A 70(3), 030301 (2004)
https://doi.org/10.1103/PhysRevA.70.030301
37 M. Hayashi, Parallel treatment of estimation of SU(2) and phase estimation, Phys. Lett. A 354(3), 183 (2006)
https://doi.org/10.1016/j.physleta.2006.01.043
38 J. Kahn, Fast rate estimation of a unitary operation in SU(d), Phys. Rev. A 75(2), 022326 (2007)
https://doi.org/10.1103/PhysRevA.75.022326
39 H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, Quantum cloning machines for equatorial qubits, Phys. Rev. A 65(1), 012304 (2001)
https://doi.org/10.1103/PhysRevA.65.012304
40 D. Bruß, M. Cinchetti, G. Mauro D’Ariano, and C. Macchiavello, Phase-covariant quantum cloning, Phys. Rev. A 62(1), 012302 (2000)
https://doi.org/10.1103/PhysRevA.62.012302
41 G. M. D’Ariano and C. Macchiavello, Optimal phase-covariant cloning for qubits and qutrits, Phys. Rev. A 67(4), 042306 (2003)
https://doi.org/10.1103/PhysRevA.67.042306
42 R. F. Reinhard, Optimal cloning of pure states, Phys. Rev. A 58(3), 1827 (1998)
https://doi.org/10.1103/PhysRevA.58.1827
43 E. B. Davies and J. T. Lewis, An operational approach to quantum probability, Commun. Math. Phys. 17(3), 239 (1970)
https://doi.org/10.1007/BF01647093
44 M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25(1), 79 (1984)
https://doi.org/10.1063/1.526000
45 Y. Yang and G. Chiribella, Optimal energy-preserving conversions of quantum coherence, arXiv: 1502.00259, 2015
46 S. Pandey, Z. Jiang, J. Combes, and C. Caves, Quantum limits on probabilistic amplifiers, Phys. Rev. A 88(3), 033852 (2013)
https://doi.org/10.1103/PhysRevA.88.033852
47 H. Everett, “Relative state” formulation of quantum mechanics, Rev. Mod. Phys. 29(3), 454 (1957)
https://doi.org/10.1103/RevModPhys.29.454
48 E. Stueckelberg, Quantum theory in real Hilbert space, Helvetica Physica Acta 33, 727 (1960)
49 L. Hardy and W. K. Wootters, Limited holism and real-vector-space quantum theory, Found. Phys. 42(3), 454 (2012)
https://doi.org/10.1007/s10701-011-9616-6
50 W. Wootters, Optimal information transfer and real-vector-space quantum theory, arXiv: 1301.2018, 2013
51 Y. N. Wang, H. D. Shi, Z. X. Xiong, L. Jing, X. J. Ren, L. Z. Mu, and H. Fan, Unified universal quantum cloning machine and fidelities, Phys. Rev. A 84(3), 034302 (2011)
https://doi.org/10.1103/PhysRevA.84.034302
52 S. Braunstein, N. Cerf, S. Iblisdir, P. van Loock, and S. Massar, Optimal cloning of coherent states with a linear amplifier and beam splitters, Phys. Rev. Lett. 86(21), 4938 (2001)
https://doi.org/10.1103/PhysRevLett.86.4938
53 B. Gendra, J. Calsamiglia, R. Muñoz-Tapia, E. Bagan, and G. Chiribella, Probabilistic metrology attains macroscopic cloning of quantum clocks, Phys. Rev. Lett. 113(26), 260402 (2014)
https://doi.org/10.1103/PhysRevLett.113.260402
54 B. Gendra, E. Ronco-Bonvehi, J. Calsamiglia, R. Munoz-Tapia, and E. Bagan, Quantum metrology assisted by abstention, Phys. Rev. Lett. 110(10), 100501 (2013)
https://doi.org/10.1103/PhysRevLett.110.100501
55 G. M. D’Ariano, C. Macchiavello, and M. Rossi, Quantum cloning by cellular automata, Phys. Rev. A 87(3), 032337 (2013)
https://doi.org/10.1103/PhysRevA.87.032337
56 W. Fulton and J. Harris, Representation Theory: A First Course, Volume 129, Springer Science & Business Media, 1991
57 R. Alicki, S. Rudnicki, and S. Sadowski, Symmetry properties of product states for the system of N n-level atoms, J. Math. Phys. 29(5), 1158 (1988)
https://doi.org/10.1063/1.527958
58 P.-L. Méliot, Kerov’s central limit theorem for Schur-Weyl measures of parameter 1/2, arXiv: 1009.4034, 2010
59 I. Marvian and R. Spekkens, A generalization of Schur-Weyl duality with applications in quantum estimation, Commun. Math. Phys. 331(2), 431 (2014)
https://doi.org/10.1007/s00220-014-2059-0
60 A. W. Harrow, Applications of coherent classical communication and the Schur transform to quantum information theory, PhD thesis, Massachusetts Institute of Technology, 2005
61 Y. Yang, D. Ebler, and G. Chiribella, Efficient quantum compression for ensembles of identically prepared mixed states, arXiv: 1506.03542, 2015
62 I. L. Chuang and D. Gottesman, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402(6760), 390 (1999)
https://doi.org/10.1038/46503
63 M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60(3), 1888 (1999)
https://doi.org/10.1103/PhysRevA.60.1888
64 P. Sekatski, M. Skotiniotis, and W. Dür, No-signaling bounds for quantum cloning and metrology, Phys. Rev. A 92(2), 022355 (2015)
https://doi.org/10.1103/PhysRevA.92.022355
65 M. A. Nielsen and I. L. Chuang, Programmable quantum gate arrays, Phys. Rev. Lett. 79(2), 321 (1997)
https://doi.org/10.1103/PhysRevLett.79.321
66 T. Rudolph and L. Grover, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett. 91(21), 217905 (2003)
https://doi.org/10.1103/PhysRevLett.91.217905
67 A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, 1982
68 V. Bužek, R. Derka, and S. Massar, Optimal quantum clocks, Phys. Rev. Lett. 82(10), 2207 (1999)
https://doi.org/10.1103/PhysRevLett.82.2207
69 D. Berry and H. M. Wiseman, Optimal states and almost optimal adaptive measurements for quantum interferometry, Phys. Rev. Lett. 85(24), 5098 (2000)
https://doi.org/10.1103/PhysRevLett.85.5098
70 G. Chiribella, G. M. D’Ariano, and P. Perinotti, Memory effects in quantum channel discrimination, Phys. Rev. Lett. 101(18), 180501 (2008)
https://doi.org/10.1103/PhysRevLett.101.180501
71 U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)
https://doi.org/10.1103/PhysRevLett.102.040403
72 B. M. Escher, R. L. de Matos Filho, and L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nat. Phys. 7(5), 406 (2011)
https://doi.org/10.1038/nphys1958
73 R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, The elusive Heisenberg limit in quantum-enhanced metrology, Nat. Commun. 3, 1063 (2012)
https://doi.org/10.1038/ncomms2067
74 R. Chaves, J. B. Brask, M. Markiewicz, J. Kołodyński, and A. Acín, Noisy metrology beyond the standard quantum limit, Phys. Rev. Lett. 111(12), 120401 (2013)
https://doi.org/10.1103/PhysRevLett.111.120401
75 R. Demkowicz-Dobrzański and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113(25), 250801 (2014)
https://doi.org/10.1103/PhysRevLett.113.250801
76 W. Kumagai and M. Hayashi, A new family of probability distributions and asymptotics of classical and locc conversions, arXiv: 1306.4166, 2013
77 M. Ozawa, Conservative quantum computing, Phys. Rev. Lett. 89(5), 057902 (2002)
https://doi.org/10.1103/PhysRevLett.89.057902
78 J. Gea-Banacloche and M. Ozawa, Constraints for quantum logic arising from conservation laws and field uctuations, J. Opt. B 7(10), S326 (2005)
https://doi.org/10.1088/1464-4266/7/10/017
79 M. Ahmadi, D. Jennings, and T. Rudolph, The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry, New J. Phys. 15(1), 013057 (2013)
https://doi.org/10.1088/1367-2630/15/1/013057
80 I. Marvian and R. Spekkens, The theory of manipulations of pure state asymmetry (I): Basic tools, equivalence classes and single copy transformations, New J. Phys. 15(3), 033001 (2013)
https://doi.org/10.1088/1367-2630/15/3/033001
81 I. Marvian and R. W. Spekkens, Extending Noethers theorem by quantifying the asymmetry of quantum states, Nat. Commun. 5(3821) (2014)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed