|
|
Quantum superreplication of states and gates |
Giulio Chiribella( ),Yuxiang Yang |
Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China |
|
|
Abstract Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/N2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/N2, and iii) a protocol that generates O(N2) nearly perfect copies of a generic pure state U|0>while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M2/N2.
|
Keywords
quantum cloning
quantum metrology
quantum superreplication
Heisenberg limit
quantum networks
|
Corresponding Author(s):
Giulio Chiribella
|
Online First Date: 31 March 2016
Issue Date: 08 June 2016
|
|
1 |
W. Wootters and W. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)
https://doi.org/10.1038/299802a0
|
2 |
D. Dieks, Communication by EPR devices, Phys. Lett. A 92(6), 271 (1982)
https://doi.org/10.1016/0375-9601(82)90084-6
|
3 |
V. Scarani, S. Iblisdir, N. Gisin, and A. Acin, Quantum cloning, Rev. Mod. Phys. 77(4), 1225 (2005)
https://doi.org/10.1103/RevModPhys.77.1225
|
4 |
N. J. Cerf and J. Fiurášek, Optical quantum cloning, Progress in Optics 49, 455 (2006)
https://doi.org/10.1016/S0079-6638(06)49006-5
|
5 |
C. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in: Conference on Computers, Systems and Signal Processing (Bangalore, India), pp 175–179, 1984
|
6 |
A. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
|
7 |
S. Wiesner, Conjugate coding, ACM Sigact News 15(1), 78 (1983)
https://doi.org/10.1145/1008908.1008920
|
8 |
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
|
9 |
V. Bužek and M. Hillery, Quantum copying: Beyond the no-cloning theorem, Phys. Rev. A 54(3), 1844 (1996)
https://doi.org/10.1103/PhysRevA.54.1844
|
10 |
N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153 (1997)
https://doi.org/10.1103/PhysRevLett.79.2153
|
11 |
D. Bruss, A. Ekert, and C. Macchiavello, Optimal universal quantum cloning and state estimation, Phys. Rev. Lett. 81(12), 2598 (1998)
https://doi.org/10.1103/PhysRevLett.81.2598
|
12 |
J. Bae and A. Acín, Asymptotic quantum cloning is state estimation, Phys. Rev. Lett. 97(3), 030402 (2006)
https://doi.org/10.1103/PhysRevLett.97.030402
|
13 |
G. Chiribella and G. M. D’Ariano, Quantum information becomes classical when distributed to many users, Phys. Rev. Lett. 97(25), 250503 (2006)
https://doi.org/10.1103/PhysRevLett.97.250503
|
14 |
G. Chiribella, On quantum estimation, quantum cloning and finite quantum de Finetti theorems, in: Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, Volume 6519, pp 9-25, Springer, 2011
https://doi.org/10.1007/978-3-642-18073-6_2
|
15 |
G. Chiribella and Y. Yang, Optimal asymptotic cloning machines, New J. Phys. 16(6), 063005 (2014)
https://doi.org/10.1088/1367-2630/16/6/063005
|
16 |
S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, Criteria for continuous-variable quantum teleportation, J. Mod. Opt. 47(2-3), 267 (2000)
https://doi.org/10.1080/09500340008244041
|
17 |
K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, Quantum benchmark for storage and transmission of coherent states, Phys. Rev. Lett. 94(15), 150503 (2005)
https://doi.org/10.1103/PhysRevLett.94.150503
|
18 |
G. Adesso and G. Chiribella, Quantum benchmark for teleportation and storage of squeezed states, Phys. Rev. Lett. 100(17), 170503 (2008)
https://doi.org/10.1103/PhysRevLett.100.170503
|
19 |
G. Chiribella and J. Xie, Optimal design and quantum benchmarks for coherent state amplifiers, Phys. Rev. Lett. 110(21), 213602 (2013)
https://doi.org/10.1103/PhysRevLett.110.213602
|
20 |
G. Chiribella and G. Adesso, Quantum benchmarks for pure single-mode Gaussian states, Phys. Rev. Lett. 112(1), 010501 (2014)
https://doi.org/10.1103/PhysRevLett.112.010501
|
21 |
H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu, Quantum cloning machines and the applications, Phys. Rep. 544(3), 241 (2014)
https://doi.org/10.1016/j.physrep.2014.06.004
|
22 |
L. M. Duan and G. C. Guo, Probabilistic cloning and identification of linearly independent quantum states, Phys. Rev. Lett. 80(22), 4999 (1998)
https://doi.org/10.1103/PhysRevLett.80.4999
|
23 |
J. Fiurášek, Optimal probabilistic cloning and purification of quantum states, Phys. Rev. A 70(3), 032308 (2004)
https://doi.org/10.1103/PhysRevA.70.032308
|
24 |
T. Ralph and A. Lund, Nondeterministic noiseless linear amplification of quantum systems, in: Ninth Inter-national Conference on Quantum Communication, Measurement and Computing (QCMC), Volume 1110, pp 155-160, AIP Publishing, 2009
https://doi.org/10.1063/1.3131295
|
25 |
G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4(5), 316 (2010)
https://doi.org/10.1038/nphoton.2010.35
|
26 |
F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, Implementation of a nondeterministic optical noiseless amplifier, Phys. Rev. Lett. 104(12), 123603 (2010)
https://doi.org/10.1103/PhysRevLett.104.123603
|
27 |
M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, Noise-powered probabilistic concentration of phase information, Nat. Phys. 6(10), 767 (2010)
https://doi.org/10.1038/nphys1743
|
28 |
A. Zavatta, J. Fiurášek, and M. Bellini, A high-fidelity noiseless amplifier for quantum light states, Nat. Photonics 5(1), 52 (2011)
https://doi.org/10.1038/nphoton.2010.260
|
29 |
G. Chiribella, Y. Yang, and A. C.C. Yao, Quantum replication at the Heisenberg limit, Nat. Commun. 4(2915) (2013)
https://doi.org/10.1038/ncomms3915
|
30 |
V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beating the standard quantum limit, Science 306(5700), 1330 (2004)
https://doi.org/10.1126/science.1104149
|
31 |
A. Winter, Coding theorem and strong converse for quantum channels, IEEE Transactions on Information Theory 45(7), 2481 (1999)
https://doi.org/10.1109/18.796385
|
32 |
G. Chiribella, G. M. D’Ariano, and P. Perinotti, Optimal cloning of unitary transformation, Phys. Rev. Lett. 101(18), 180504 (2008)
https://doi.org/10.1103/PhysRevLett.101.180504
|
33 |
W. Dür, P. Sekatski, and M. Skotiniotis, Deterministic superreplication of one-parameter unitary transformations, Phys. Rev. Lett. 114(12), 120503 (2015)
https://doi.org/10.1103/PhysRevLett.114.120503
|
34 |
G. Chiribella, Y. Yang, and C. Huang, Universal superreplication of unitary gates, Phys. Rev. Lett. 114(12), 120504 (2015)
https://doi.org/10.1103/PhysRevLett.114.120504
|
35 |
G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, Efficient use of quantum resources for the transmission of a reference frame, Phys. Rev. Lett. 93(18), 180503 (2004)
https://doi.org/10.1103/PhysRevLett.93.180503
|
36 |
E. Bagan, M. Baig, and R. Munoz-Tapia, Quantum reverse engineering and reference-frame alignment without nonlocal correlations, Phys. Rev. A 70(3), 030301 (2004)
https://doi.org/10.1103/PhysRevA.70.030301
|
37 |
M. Hayashi, Parallel treatment of estimation of SU(2) and phase estimation, Phys. Lett. A 354(3), 183 (2006)
https://doi.org/10.1016/j.physleta.2006.01.043
|
38 |
J. Kahn, Fast rate estimation of a unitary operation in SU(d), Phys. Rev. A 75(2), 022326 (2007)
https://doi.org/10.1103/PhysRevA.75.022326
|
39 |
H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, Quantum cloning machines for equatorial qubits, Phys. Rev. A 65(1), 012304 (2001)
https://doi.org/10.1103/PhysRevA.65.012304
|
40 |
D. Bruß, M. Cinchetti, G. Mauro D’Ariano, and C. Macchiavello, Phase-covariant quantum cloning, Phys. Rev. A 62(1), 012302 (2000)
https://doi.org/10.1103/PhysRevA.62.012302
|
41 |
G. M. D’Ariano and C. Macchiavello, Optimal phase-covariant cloning for qubits and qutrits, Phys. Rev. A 67(4), 042306 (2003)
https://doi.org/10.1103/PhysRevA.67.042306
|
42 |
R. F. Reinhard, Optimal cloning of pure states, Phys. Rev. A 58(3), 1827 (1998)
https://doi.org/10.1103/PhysRevA.58.1827
|
43 |
E. B. Davies and J. T. Lewis, An operational approach to quantum probability, Commun. Math. Phys. 17(3), 239 (1970)
https://doi.org/10.1007/BF01647093
|
44 |
M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25(1), 79 (1984)
https://doi.org/10.1063/1.526000
|
45 |
Y. Yang and G. Chiribella, Optimal energy-preserving conversions of quantum coherence, arXiv: 1502.00259, 2015
|
46 |
S. Pandey, Z. Jiang, J. Combes, and C. Caves, Quantum limits on probabilistic amplifiers, Phys. Rev. A 88(3), 033852 (2013)
https://doi.org/10.1103/PhysRevA.88.033852
|
47 |
H. Everett, “Relative state” formulation of quantum mechanics, Rev. Mod. Phys. 29(3), 454 (1957)
https://doi.org/10.1103/RevModPhys.29.454
|
48 |
E. Stueckelberg, Quantum theory in real Hilbert space, Helvetica Physica Acta 33, 727 (1960)
|
49 |
L. Hardy and W. K. Wootters, Limited holism and real-vector-space quantum theory, Found. Phys. 42(3), 454 (2012)
https://doi.org/10.1007/s10701-011-9616-6
|
50 |
W. Wootters, Optimal information transfer and real-vector-space quantum theory, arXiv: 1301.2018, 2013
|
51 |
Y. N. Wang, H. D. Shi, Z. X. Xiong, L. Jing, X. J. Ren, L. Z. Mu, and H. Fan, Unified universal quantum cloning machine and fidelities, Phys. Rev. A 84(3), 034302 (2011)
https://doi.org/10.1103/PhysRevA.84.034302
|
52 |
S. Braunstein, N. Cerf, S. Iblisdir, P. van Loock, and S. Massar, Optimal cloning of coherent states with a linear amplifier and beam splitters, Phys. Rev. Lett. 86(21), 4938 (2001)
https://doi.org/10.1103/PhysRevLett.86.4938
|
53 |
B. Gendra, J. Calsamiglia, R. Muñoz-Tapia, E. Bagan, and G. Chiribella, Probabilistic metrology attains macroscopic cloning of quantum clocks, Phys. Rev. Lett. 113(26), 260402 (2014)
https://doi.org/10.1103/PhysRevLett.113.260402
|
54 |
B. Gendra, E. Ronco-Bonvehi, J. Calsamiglia, R. Munoz-Tapia, and E. Bagan, Quantum metrology assisted by abstention, Phys. Rev. Lett. 110(10), 100501 (2013)
https://doi.org/10.1103/PhysRevLett.110.100501
|
55 |
G. M. D’Ariano, C. Macchiavello, and M. Rossi, Quantum cloning by cellular automata, Phys. Rev. A 87(3), 032337 (2013)
https://doi.org/10.1103/PhysRevA.87.032337
|
56 |
W. Fulton and J. Harris, Representation Theory: A First Course, Volume 129, Springer Science & Business Media, 1991
|
57 |
R. Alicki, S. Rudnicki, and S. Sadowski, Symmetry properties of product states for the system of N n-level atoms, J. Math. Phys. 29(5), 1158 (1988)
https://doi.org/10.1063/1.527958
|
58 |
P.-L. Méliot, Kerov’s central limit theorem for Schur-Weyl measures of parameter 1/2, arXiv: 1009.4034, 2010
|
59 |
I. Marvian and R. Spekkens, A generalization of Schur-Weyl duality with applications in quantum estimation, Commun. Math. Phys. 331(2), 431 (2014)
https://doi.org/10.1007/s00220-014-2059-0
|
60 |
A. W. Harrow, Applications of coherent classical communication and the Schur transform to quantum information theory, PhD thesis, Massachusetts Institute of Technology, 2005
|
61 |
Y. Yang, D. Ebler, and G. Chiribella, Efficient quantum compression for ensembles of identically prepared mixed states, arXiv: 1506.03542, 2015
|
62 |
I. L. Chuang and D. Gottesman, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402(6760), 390 (1999)
https://doi.org/10.1038/46503
|
63 |
M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60(3), 1888 (1999)
https://doi.org/10.1103/PhysRevA.60.1888
|
64 |
P. Sekatski, M. Skotiniotis, and W. Dür, No-signaling bounds for quantum cloning and metrology, Phys. Rev. A 92(2), 022355 (2015)
https://doi.org/10.1103/PhysRevA.92.022355
|
65 |
M. A. Nielsen and I. L. Chuang, Programmable quantum gate arrays, Phys. Rev. Lett. 79(2), 321 (1997)
https://doi.org/10.1103/PhysRevLett.79.321
|
66 |
T. Rudolph and L. Grover, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett. 91(21), 217905 (2003)
https://doi.org/10.1103/PhysRevLett.91.217905
|
67 |
A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, 1982
|
68 |
V. Bužek, R. Derka, and S. Massar, Optimal quantum clocks, Phys. Rev. Lett. 82(10), 2207 (1999)
https://doi.org/10.1103/PhysRevLett.82.2207
|
69 |
D. Berry and H. M. Wiseman, Optimal states and almost optimal adaptive measurements for quantum interferometry, Phys. Rev. Lett. 85(24), 5098 (2000)
https://doi.org/10.1103/PhysRevLett.85.5098
|
70 |
G. Chiribella, G. M. D’Ariano, and P. Perinotti, Memory effects in quantum channel discrimination, Phys. Rev. Lett. 101(18), 180501 (2008)
https://doi.org/10.1103/PhysRevLett.101.180501
|
71 |
U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)
https://doi.org/10.1103/PhysRevLett.102.040403
|
72 |
B. M. Escher, R. L. de Matos Filho, and L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nat. Phys. 7(5), 406 (2011)
https://doi.org/10.1038/nphys1958
|
73 |
R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, The elusive Heisenberg limit in quantum-enhanced metrology, Nat. Commun. 3, 1063 (2012)
https://doi.org/10.1038/ncomms2067
|
74 |
R. Chaves, J. B. Brask, M. Markiewicz, J. Kołodyński, and A. Acín, Noisy metrology beyond the standard quantum limit, Phys. Rev. Lett. 111(12), 120401 (2013)
https://doi.org/10.1103/PhysRevLett.111.120401
|
75 |
R. Demkowicz-Dobrzański and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113(25), 250801 (2014)
https://doi.org/10.1103/PhysRevLett.113.250801
|
76 |
W. Kumagai and M. Hayashi, A new family of probability distributions and asymptotics of classical and locc conversions, arXiv: 1306.4166, 2013
|
77 |
M. Ozawa, Conservative quantum computing, Phys. Rev. Lett. 89(5), 057902 (2002)
https://doi.org/10.1103/PhysRevLett.89.057902
|
78 |
J. Gea-Banacloche and M. Ozawa, Constraints for quantum logic arising from conservation laws and field uctuations, J. Opt. B 7(10), S326 (2005)
https://doi.org/10.1088/1464-4266/7/10/017
|
79 |
M. Ahmadi, D. Jennings, and T. Rudolph, The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry, New J. Phys. 15(1), 013057 (2013)
https://doi.org/10.1088/1367-2630/15/1/013057
|
80 |
I. Marvian and R. Spekkens, The theory of manipulations of pure state asymmetry (I): Basic tools, equivalence classes and single copy transformations, New J. Phys. 15(3), 033001 (2013)
https://doi.org/10.1088/1367-2630/15/3/033001
|
81 |
I. Marvian and R. W. Spekkens, Extending Noethers theorem by quantifying the asymmetry of quantum states, Nat. Commun. 5(3821) (2014)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|