Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (3) : 110305    https://doi.org/10.1007/s11467-016-0558-5
RESEARCH ARTICLE
Uncertainty relations for general phase spaces
Reinhard F. Werner()
Institut für Theoretische Physik, Leibniz Universit ä t, Hannover, Germany
 Download: PDF(301 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.

Keywords uncertainty relations      phase space      measurement uncertainty     
Corresponding Author(s): Reinhard F. Werner   
Online First Date: 31 March 2016    Issue Date: 08 June 2016
 Cite this article:   
Reinhard F. Werner. Uncertainty relations for general phase spaces[J]. Front. Phys. , 2016, 11(3): 110305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0558-5
https://academic.hep.com.cn/fop/EN/Y2016/V11/I3/110305
1 J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin: Springer, 1932
2 L. Dammeier, R. Schwonnek, and R. F. Werner, Uncertainty relations for angular momentum, New J. Phys.17, 093046 (2015), arXiv: 1505.00049
3 P. Busch, P. Lahti, and R. F. Werner, Proof of Heisenberg’s error-disturbance relation, Phys. Rev. Lett.111, 160405 (2013), arXiv: 1306.1565
https://doi.org/10.1103/PhysRevLett.111.160405
4 P. Busch, P. Lahti, and R. F. Werner, Measurement uncertainty relations, J. Math. Phys.55, 042111 (2014), arXiv: 1312.4392
https://doi.org/10.1063/1.4871444
5 R. F. Werner, The uncertainty relation for joint measurement of position and momentum, Quant. Inform. Comput.4, 546 (2004), arXiv: quant-ph/0405184
6 P. Busch, J. Kiukas, and R. F. Werner, Sharp uncertainty relations for number and angle, (in preparation)
7 R. F. Werner, Physical uniformities on the state space of nonrelativistic quantum mechanics, Found. Phys.13, 859 (1983)
https://doi.org/10.1007/BF01906273
8 R. F. Werner, Quantum harmonic analysis on phase space, J. Math. Phys.25, 1404 (1984)
https://doi.org/10.1063/1.526310
9 E. Hewitt and K. Ross, Abstract Harmonic analysis (2 Vols.), Berlin: Springer, 1962, 1970
10 H. Reiter and J. Stegeman, Classical Harminic analysis and locally compact groups, Oxford: Clarendon, 2000
11 C. Villani, Optimal Transport, Springer, 2009
https://doi.org/10.1007/978-3-540-71050-9
12 W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschr. Phys.43, 172 (1927)
https://doi.org/10.1007/BF01397280
13 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1972
14 A. L. Hashagen (in preparation)
15 G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta62, 980 (1989)
[1] Ying-Yue Yang, Wen-Yang Sun, Wei-Nan Shi, Fei Ming, Dong Wang, Liu Ye. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions[J]. Front. Phys. , 2019, 14(3): 31601-.
[2] Halqem Nizamidin,Abduwali Anwar,Sayipjamal Dulat,Kang Li. Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics[J]. Front. Phys. , 2014, 9(4): 446-450.
[3] Werner A. Hofer. Heisenberg, uncertainty, and the scanning tunneling microscope[J]. Front. Phys. , 2012, 7(2): 218-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed