|
|
Uncertainty relations for general phase spaces |
Reinhard F. Werner( ) |
Institut für Theoretische Physik, Leibniz Universit ä t, Hannover, Germany |
|
|
Abstract We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.
|
Keywords
uncertainty relations
phase space
measurement uncertainty
|
Corresponding Author(s):
Reinhard F. Werner
|
Online First Date: 31 March 2016
Issue Date: 08 June 2016
|
|
1 |
J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin: Springer, 1932
|
2 |
L. Dammeier, R. Schwonnek, and R. F. Werner, Uncertainty relations for angular momentum, New J. Phys.17, 093046 (2015), arXiv: 1505.00049
|
3 |
P. Busch, P. Lahti, and R. F. Werner, Proof of Heisenberg’s error-disturbance relation, Phys. Rev. Lett.111, 160405 (2013), arXiv: 1306.1565
https://doi.org/10.1103/PhysRevLett.111.160405
|
4 |
P. Busch, P. Lahti, and R. F. Werner, Measurement uncertainty relations, J. Math. Phys.55, 042111 (2014), arXiv: 1312.4392
https://doi.org/10.1063/1.4871444
|
5 |
R. F. Werner, The uncertainty relation for joint measurement of position and momentum, Quant. Inform. Comput.4, 546 (2004), arXiv: quant-ph/0405184
|
6 |
P. Busch, J. Kiukas, and R. F. Werner, Sharp uncertainty relations for number and angle, (in preparation)
|
7 |
R. F. Werner, Physical uniformities on the state space of nonrelativistic quantum mechanics, Found. Phys.13, 859 (1983)
https://doi.org/10.1007/BF01906273
|
8 |
R. F. Werner, Quantum harmonic analysis on phase space, J. Math. Phys.25, 1404 (1984)
https://doi.org/10.1063/1.526310
|
9 |
E. Hewitt and K. Ross, Abstract Harmonic analysis (2 Vols.), Berlin: Springer, 1962, 1970
|
10 |
H. Reiter and J. Stegeman, Classical Harminic analysis and locally compact groups, Oxford: Clarendon, 2000
|
11 |
C. Villani, Optimal Transport, Springer, 2009
https://doi.org/10.1007/978-3-540-71050-9
|
12 |
W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschr. Phys.43, 172 (1927)
https://doi.org/10.1007/BF01397280
|
13 |
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1972
|
14 |
A. L. Hashagen (in preparation)
|
15 |
G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta62, 980 (1989)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|