Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (3) : 111206    https://doi.org/10.1007/s11467-016-0562-9
REVIEW ARTICLE
Hopf algebras and Dyson–Schwinger equations
Stefan Weinzierl()
PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität Mainz, D- 55099 Mainz, Germany
 Download: PDF(367 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper I discuss Hopf algebras and Dyson–Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson–Schwinger equations.

Keywords Feynman integrals      Hopf algebras      Dyson–Schwinger equations     
Corresponding Author(s): Stefan Weinzierl   
Online First Date: 17 March 2016    Issue Date: 08 June 2016
 Cite this article:   
Stefan Weinzierl. Hopf algebras and Dyson–Schwinger equations[J]. Front. Phys. , 2016, 11(3): 111206.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0562-9
https://academic.hep.com.cn/fop/EN/Y2016/V11/I3/111206
1 H. Hopf, Über Die Topologie der Gruppen-Mannigfaltigkeiten und Ihre Verallgemeinerungen, Ann. Math. 42(1), 22 (1941)
https://doi.org/10.2307/1968985
2 S. L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111(4), 613 (1987)
https://doi.org/10.1007/BF01219077
3 D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2, 303 (1998)
https://doi.org/10.4310/ATMP.1998.v2.n2.a4
4 A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199(1), 203 (1998)
https://doi.org/10.1007/s002200050499
5 S. Weinzierl, Hopf algebra structures in particle physics, Eur. Phys. J. C 33(S1), s871 (2004)
https://doi.org/10.1140/epjcd/s2003-03-1001-y
6 M. Sweedler, Hopf Algebras, New York: Benjamin, 1969
7 C. Kassel, Quantum Groups, New York: Springer, 1995
https://doi.org/10.1007/978-1-4612-0783-2
8 S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Int. J. Mod. Phys. A 05(01), 1 (1990)
https://doi.org/10.1142/S0217751X90000027
9 D. Manchon, Hopf algebras, from basics to applications to renormalization, arXiv: math/0408405, 2004
10 A. Frabetti, Renormalization Hopf algebras and combinatorial groups, in Geometric and Topological Methods for Quantum Field Theory Proceedings of the 2007 Villa de Leyva Summer School, pp. 159–219, Cambridge University Press, 2010, arXiv: 0805.4385
11 R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119(1), 1 (1996)
https://doi.org/10.1006/aima.1996.0026
12 P. Schupp, Quantum groups, noncommutative differential geometry and applications, Ph.D. thesis, UC, Berkeley (1993)
13 J. Ecalle, ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan, Journal de Théorie des Nombres de Bordeaux 15(2), 411 (2003)
https://doi.org/10.5802/jtnb.410
14 C. Reutenauer, Free Lie Algebras, Oxford: Clarendon Press, 1993
15 S. Weinzierl, Feynman graphs, in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, pp. 381–406, Vienna: Springer, 2013, arXiv: 1301.6918
16 C. Bogner and S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A 25(13), 2585 (2010)
https://doi.org/10.1142/S0217751X10049438
17 W. Zimmermann, Convergence of Bogoliubov’s method of renormalization in momentum space, Commun. Math. Phys. 15(3), 208 (1969)
https://doi.org/10.1007/BF01645676
18 K. Ebrahimi-Fard and L. Guo, Rota-Baxter algebras in renormalization of perturbative quantum field theory, Fields Inst. Commun. 50, 47 (2007)
19 T. Krajewski and R. Wulkenhaar, On Kreimer’s Hopf algebra structure of Feynman graphs, Eur. Phys. J. C 7(4), 697 (1999)
https://doi.org/10.1007/s100529801037
20 D. Kreimer, On overlapping divergences, Commun. Math. Phys. 204(3), 669 (1999)
https://doi.org/10.1007/s002200050661
21 A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem (1): The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys. 210(1), 249 (2000)
https://doi.org/10.1007/s002200050779
22 A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem (2): The beta function, diffeomorphisms and the renormalization group, Commun. Math. Phys. 216(1), 215 (2001)
https://doi.org/10.1007/PL00005547
23 W. D. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach, Commun. Math. Phys. 276(3), 773 (2007)
https://doi.org/10.1007/s00220-007-0353-9
24 K. Ebrahimi-Fard and F. Patras, Exponential Renormalization, Ann. Henri Poincare 11(5), 943 (2010)
https://doi.org/10.1007/s00023-010-0050-7
25 K. Ebrahimi-Fard and F. Patras, Exponential renormalization (II): Bogoliubov’s R-operation and momentum subtraction schemes, J. Math. Phys. 53(8), 083505 (2012)
https://doi.org/10.1063/1.4742185
26 A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5(4), 497 (1998)
https://doi.org/10.4310/MRL.1998.v5.n4.a7
27 A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, arXiv: math.AG/0103059, 2001
28 J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisonek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353, 907 (2001)
https://doi.org/10.1090/S0002-9947-00-02616-7
29 J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167(3), 177 (2005)
https://doi.org/10.1016/j.cpc.2004.12.009
30 E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15(05), 725 (2000)
https://doi.org/10.1142/S0217751X00000367
31 T. Gehrmann and E. Remiddi, Two-loop master integrals for jets: The planar topologies, Nucl. Phys. B 601(1-2), 248 (2001)
https://doi.org/10.1016/S0550-3213(01)00057-8
32 N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldina (Halle) 90, 123 (1909)
33 S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theory 148, 328 (2015)
https://doi.org/10.1016/j.jnt.2014.09.032
34 L. Adams, C. Bogner, and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55(10), 102301 (2014)
https://doi.org/10.1063/1.4896563
35 L. Adams, C. Bogner, and S. Weinzierl, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, J. Math. Phys. 56(7), 072303 (2015)
https://doi.org/10.1063/1.4926985
36 K. T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83(5), 831 (1977)
https://doi.org/10.1090/S0002-9904-1977-14320-6
37 F. Brown, Iterated integrals in quantum field theory, in Geometric and Topological Methods for Quantum Field Theory Proceedings of the 2009 Villa de Leyva Summer School, pp. 188–240, Cambridge University Press, 2013
38 J. Ablinger, J. Blümlein, and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials,J. Math. Phys. 52(10), 102301 (2011)
https://doi.org/10.1063/1.3629472
39 M. E. Hoffman, Quasi-shuffle products, J. Algebr. Comb. 11(1), 49 (2000)
https://doi.org/10.1023/A:1008791603281
40 L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math. 150(1), 117 (2000)
https://doi.org/10.1006/aima.1999.1858
41 S. Moch, P. Uwer, and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multi-loop integrals, J. Math. Phys. 43(6), 3363 (2002)
https://doi.org/10.1063/1.1471366
42 A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128(2), 209 (2005)
https://doi.org/10.1215/S0012-7094-04-12822-2
43 C. Duhr, Mathematical aspects of scattering amplitudes, arXiv: 1411.7538, 2014
44 I. Bierenbaum, D. Kreimer, and S. Weinzierl, The next-to-ladder approximation for linear Dyson-Schwinger equations, Phys. Lett. B 646(2-3), 129 (2007)
https://doi.org/10.1016/j.physletb.2007.01.018
45 C. Bergbauer and D. Kreimer, Hopf algebras in renormalization theory: Locality and Dyson-Schwinger equations from Hochschild cohomology, IRMA Lect. Math. Theor. Phys. 10, 133 (2006)
46 D. Kreimer and K. Yeats, Recursion and growth estimates in renormalizable quantum field theory, Commun. Math. Phys. 279(2), 401 (2008)
https://doi.org/10.1007/s00220-008-0431-7
47 L. Foissy, General Dyson-Schwinger equations and systems, Commun. Math. Phys. 327(1), 151 (2014)
https://doi.org/10.1007/s00220-014-1941-0
48 O. Krüger and D. Kreimer, Filtrations in Dyson-Schwinger equations: Next-to j-leading log expansions systematically, Ann. Phys. 360, 293 (2015)
https://doi.org/10.1016/j.aop.2015.05.013
49 I. Bierenbaum and S. Weinzierl, The massless two-loop two-point function, Eur. Phys. J. C 32(1), 67 (2003)
https://doi.org/10.1140/epjc/s2003-01389-7
50 D. Kreimer and E. Panzer, Renormalization and Mellin transforms, in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, pp. 195–223, Vienna: Springer, 2013, arXiv: 1207.6321
51 E. Panzer, Renormalization, Hopf algebras and Mellin transforms, arXiv: 1407.4943, 2014
52 F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287(3), 925 (2009)
https://doi.org/10.1007/s00220-009-0740-5
53 D. J. Broadhurst and D. Kreimer, Exact solutions of Dyson-Schwinger equations for iterated one loop integrals and propagator coupling duality, Nucl. Phys. B 600(2), 403 (2001)
https://doi.org/10.1016/S0550-3213(01)00071-2
54 D. Kreimer and K. Yeats, An etude in non-linear Dyson-Schwinger equations, Nucl. Phys. B Proc. Suppl. 160, 116 (2006)
https://doi.org/10.1016/j.nuclphysbps.2006.09.036
55 G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, The QED beta-function from global solutions to Dyson-Schwinger equations, Ann. Phys. 324, 205 (2009)
https://doi.org/10.1016/j.aop.2008.05.007
56 G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, The QCD beta-function from global solutions to Dyson-Schwinger equations, Ann. Phys. 325(2), 300 (2010)
https://doi.org/10.1016/j.aop.2009.10.011
57 M. P. Bellon and P. J. Clavier, Higher order corrections to the asymptotic perturbative solution of a Schwinger-Dyson equation, Lett. Math. Phys. 104(6), 749 (2014)
https://doi.org/10.1007/s11005-014-0686-1
58 M. P. Bellon and P. J. Clavier, A Schwinger-Dyson equation in the Borel plane: Singularities of the solution, Lett. Math. Phys. 105(6), 795 (2015)
https://doi.org/10.1007/s11005-015-0761-2
59 P. J. Clavier, Analytic results for Schwinger-Dyson equations with a mass term, Lett. Math. Phys. 105(6), 779 (2015)
https://doi.org/10.1007/s11005-015-0762-1
[1] Joachim Kock. Combinatorial Dyson–Schwinger equations and inductive data type[J]. Front. Phys. , 2016, 11(3): 111205-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed