|
|
Hopf algebras and Dyson–Schwinger equations |
Stefan Weinzierl( ) |
PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität Mainz, D- 55099 Mainz, Germany |
|
|
Abstract In this paper I discuss Hopf algebras and Dyson–Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson–Schwinger equations.
|
Keywords
Feynman integrals
Hopf algebras
Dyson–Schwinger equations
|
Corresponding Author(s):
Stefan Weinzierl
|
Online First Date: 17 March 2016
Issue Date: 08 June 2016
|
|
1 |
H. Hopf, Über Die Topologie der Gruppen-Mannigfaltigkeiten und Ihre Verallgemeinerungen, Ann. Math. 42(1), 22 (1941)
https://doi.org/10.2307/1968985
|
2 |
S. L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111(4), 613 (1987)
https://doi.org/10.1007/BF01219077
|
3 |
D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2, 303 (1998)
https://doi.org/10.4310/ATMP.1998.v2.n2.a4
|
4 |
A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199(1), 203 (1998)
https://doi.org/10.1007/s002200050499
|
5 |
S. Weinzierl, Hopf algebra structures in particle physics, Eur. Phys. J. C 33(S1), s871 (2004)
https://doi.org/10.1140/epjcd/s2003-03-1001-y
|
6 |
M. Sweedler, Hopf Algebras, New York: Benjamin, 1969
|
7 |
C. Kassel, Quantum Groups, New York: Springer, 1995
https://doi.org/10.1007/978-1-4612-0783-2
|
8 |
S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Int. J. Mod. Phys. A 05(01), 1 (1990)
https://doi.org/10.1142/S0217751X90000027
|
9 |
D. Manchon, Hopf algebras, from basics to applications to renormalization, arXiv: math/0408405, 2004
|
10 |
A. Frabetti, Renormalization Hopf algebras and combinatorial groups, in Geometric and Topological Methods for Quantum Field Theory Proceedings of the 2007 Villa de Leyva Summer School, pp. 159–219, Cambridge University Press, 2010, arXiv: 0805.4385
|
11 |
R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119(1), 1 (1996)
https://doi.org/10.1006/aima.1996.0026
|
12 |
P. Schupp, Quantum groups, noncommutative differential geometry and applications, Ph.D. thesis, UC, Berkeley (1993)
|
13 |
J. Ecalle, ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan, Journal de Théorie des Nombres de Bordeaux 15(2), 411 (2003)
https://doi.org/10.5802/jtnb.410
|
14 |
C. Reutenauer, Free Lie Algebras, Oxford: Clarendon Press, 1993
|
15 |
S. Weinzierl, Feynman graphs, in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, pp. 381–406, Vienna: Springer, 2013, arXiv: 1301.6918
|
16 |
C. Bogner and S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A 25(13), 2585 (2010)
https://doi.org/10.1142/S0217751X10049438
|
17 |
W. Zimmermann, Convergence of Bogoliubov’s method of renormalization in momentum space, Commun. Math. Phys. 15(3), 208 (1969)
https://doi.org/10.1007/BF01645676
|
18 |
K. Ebrahimi-Fard and L. Guo, Rota-Baxter algebras in renormalization of perturbative quantum field theory, Fields Inst. Commun. 50, 47 (2007)
|
19 |
T. Krajewski and R. Wulkenhaar, On Kreimer’s Hopf algebra structure of Feynman graphs, Eur. Phys. J. C 7(4), 697 (1999)
https://doi.org/10.1007/s100529801037
|
20 |
D. Kreimer, On overlapping divergences, Commun. Math. Phys. 204(3), 669 (1999)
https://doi.org/10.1007/s002200050661
|
21 |
A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem (1): The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys. 210(1), 249 (2000)
https://doi.org/10.1007/s002200050779
|
22 |
A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem (2): The beta function, diffeomorphisms and the renormalization group, Commun. Math. Phys. 216(1), 215 (2001)
https://doi.org/10.1007/PL00005547
|
23 |
W. D. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach, Commun. Math. Phys. 276(3), 773 (2007)
https://doi.org/10.1007/s00220-007-0353-9
|
24 |
K. Ebrahimi-Fard and F. Patras, Exponential Renormalization, Ann. Henri Poincare 11(5), 943 (2010)
https://doi.org/10.1007/s00023-010-0050-7
|
25 |
K. Ebrahimi-Fard and F. Patras, Exponential renormalization (II): Bogoliubov’s R-operation and momentum subtraction schemes, J. Math. Phys. 53(8), 083505 (2012)
https://doi.org/10.1063/1.4742185
|
26 |
A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5(4), 497 (1998)
https://doi.org/10.4310/MRL.1998.v5.n4.a7
|
27 |
A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, arXiv: math.AG/0103059, 2001
|
28 |
J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisonek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353, 907 (2001)
https://doi.org/10.1090/S0002-9947-00-02616-7
|
29 |
J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167(3), 177 (2005)
https://doi.org/10.1016/j.cpc.2004.12.009
|
30 |
E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15(05), 725 (2000)
https://doi.org/10.1142/S0217751X00000367
|
31 |
T. Gehrmann and E. Remiddi, Two-loop master integrals for jets: The planar topologies, Nucl. Phys. B 601(1-2), 248 (2001)
https://doi.org/10.1016/S0550-3213(01)00057-8
|
32 |
N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldina (Halle) 90, 123 (1909)
|
33 |
S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theory 148, 328 (2015)
https://doi.org/10.1016/j.jnt.2014.09.032
|
34 |
L. Adams, C. Bogner, and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55(10), 102301 (2014)
https://doi.org/10.1063/1.4896563
|
35 |
L. Adams, C. Bogner, and S. Weinzierl, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, J. Math. Phys. 56(7), 072303 (2015)
https://doi.org/10.1063/1.4926985
|
36 |
K. T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83(5), 831 (1977)
https://doi.org/10.1090/S0002-9904-1977-14320-6
|
37 |
F. Brown, Iterated integrals in quantum field theory, in Geometric and Topological Methods for Quantum Field Theory Proceedings of the 2009 Villa de Leyva Summer School, pp. 188–240, Cambridge University Press, 2013
|
38 |
J. Ablinger, J. Blümlein, and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials,J. Math. Phys. 52(10), 102301 (2011)
https://doi.org/10.1063/1.3629472
|
39 |
M. E. Hoffman, Quasi-shuffle products, J. Algebr. Comb. 11(1), 49 (2000)
https://doi.org/10.1023/A:1008791603281
|
40 |
L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math. 150(1), 117 (2000)
https://doi.org/10.1006/aima.1999.1858
|
41 |
S. Moch, P. Uwer, and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multi-loop integrals, J. Math. Phys. 43(6), 3363 (2002)
https://doi.org/10.1063/1.1471366
|
42 |
A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128(2), 209 (2005)
https://doi.org/10.1215/S0012-7094-04-12822-2
|
43 |
C. Duhr, Mathematical aspects of scattering amplitudes, arXiv: 1411.7538, 2014
|
44 |
I. Bierenbaum, D. Kreimer, and S. Weinzierl, The next-to-ladder approximation for linear Dyson-Schwinger equations, Phys. Lett. B 646(2-3), 129 (2007)
https://doi.org/10.1016/j.physletb.2007.01.018
|
45 |
C. Bergbauer and D. Kreimer, Hopf algebras in renormalization theory: Locality and Dyson-Schwinger equations from Hochschild cohomology, IRMA Lect. Math. Theor. Phys. 10, 133 (2006)
|
46 |
D. Kreimer and K. Yeats, Recursion and growth estimates in renormalizable quantum field theory, Commun. Math. Phys. 279(2), 401 (2008)
https://doi.org/10.1007/s00220-008-0431-7
|
47 |
L. Foissy, General Dyson-Schwinger equations and systems, Commun. Math. Phys. 327(1), 151 (2014)
https://doi.org/10.1007/s00220-014-1941-0
|
48 |
O. Krüger and D. Kreimer, Filtrations in Dyson-Schwinger equations: Next-to j-leading log expansions systematically, Ann. Phys. 360, 293 (2015)
https://doi.org/10.1016/j.aop.2015.05.013
|
49 |
I. Bierenbaum and S. Weinzierl, The massless two-loop two-point function, Eur. Phys. J. C 32(1), 67 (2003)
https://doi.org/10.1140/epjc/s2003-01389-7
|
50 |
D. Kreimer and E. Panzer, Renormalization and Mellin transforms, in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, pp. 195–223, Vienna: Springer, 2013, arXiv: 1207.6321
|
51 |
E. Panzer, Renormalization, Hopf algebras and Mellin transforms, arXiv: 1407.4943, 2014
|
52 |
F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287(3), 925 (2009)
https://doi.org/10.1007/s00220-009-0740-5
|
53 |
D. J. Broadhurst and D. Kreimer, Exact solutions of Dyson-Schwinger equations for iterated one loop integrals and propagator coupling duality, Nucl. Phys. B 600(2), 403 (2001)
https://doi.org/10.1016/S0550-3213(01)00071-2
|
54 |
D. Kreimer and K. Yeats, An etude in non-linear Dyson-Schwinger equations, Nucl. Phys. B Proc. Suppl. 160, 116 (2006)
https://doi.org/10.1016/j.nuclphysbps.2006.09.036
|
55 |
G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, The QED beta-function from global solutions to Dyson-Schwinger equations, Ann. Phys. 324, 205 (2009)
https://doi.org/10.1016/j.aop.2008.05.007
|
56 |
G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, The QCD beta-function from global solutions to Dyson-Schwinger equations, Ann. Phys. 325(2), 300 (2010)
https://doi.org/10.1016/j.aop.2009.10.011
|
57 |
M. P. Bellon and P. J. Clavier, Higher order corrections to the asymptotic perturbative solution of a Schwinger-Dyson equation, Lett. Math. Phys. 104(6), 749 (2014)
https://doi.org/10.1007/s11005-014-0686-1
|
58 |
M. P. Bellon and P. J. Clavier, A Schwinger-Dyson equation in the Borel plane: Singularities of the solution, Lett. Math. Phys. 105(6), 795 (2015)
https://doi.org/10.1007/s11005-015-0761-2
|
59 |
P. J. Clavier, Analytic results for Schwinger-Dyson equations with a mass term, Lett. Math. Phys. 105(6), 779 (2015)
https://doi.org/10.1007/s11005-015-0762-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|