Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (1) : 120301    https://doi.org/10.1007/s11467-016-0616-z
RESEARCH ARTICLE
Quantum cellular automata and free quantum field theory
Giacomo Mauro D’Ariano(),Paolo Perinotti()
QUIT Group, Dipartimento di Fisica, via Bassi 6, I-27100 Pavia, Italy
 Download: PDF(498 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In a series of recent papers [14] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors.

In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.

Keywords quantum automata      quantum walks      quantum fields axiomatics      Planck scale     
Corresponding Author(s): Giacomo Mauro D’Ariano,Paolo Perinotti   
Issue Date: 17 October 2016
 Cite this article:   
Giacomo Mauro D&rsquo,Ariano,Paolo Perinotti. Quantum cellular automata and free quantum field theory[J]. Front. Phys. , 2017, 12(1): 120301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0616-z
https://academic.hep.com.cn/fop/EN/Y2017/V12/I1/120301
1 G. M. D’Ariano and P. Perinotti, Derivation of the Dirac equation from principles of information processing, Phys. Rev. A 90(6), 062106 (2014)
https://doi.org/10.1103/PhysRevA.90.062106
2 A. Bisio, G. M. D’Ariano, and A. Tosini, Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension, Ann. Phys. 354, 244 (2015)
https://doi.org/10.1016/j.aop.2014.12.016
3 A. Bisio, G. M. D’Ariano, and A. Tosini, Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential, Phys. Rev. A 88(3), 032301 (2013)
https://doi.org/10.1103/PhysRevA.88.032301
4 A. Bisio, G. M. D’Ariano, and P. Perinotti, Quantum cellular automaton theory of light, Ann. Phys. 368, 177 (2016)
https://doi.org/10.1016/j.aop.2016.02.009
5 G. Chiribella, G. D’Ariano, and P. Perinotti, Informational derivation of quantum theory, Phys. Rev. A 84(012311), 012311 (2011)
https://doi.org/10.1103/PhysRevA.84.012311
6 G. M. D’Ariano and P. Perinotti, Quantum theory is an Information Theory, Found. Phys. 46, 269 (2016)
https://doi.org/10.1007/s10701-015-9935-0
7 L. Hardy, Quantum theory from five reasonable axioms, arXiv: quant-ph/0101012 (2001)
8 C. A. Fuchs, Quantum Mechanics as Quantum Information (and only a little more), arXiv: quant-ph/0205039 (2002)
9 G. M. D. Ariano, On the missing axiom of quantum mechanicss, AIP Conf. Proc. 810(1), 114 (2006)
https://doi.org/10.1063/1.2158715
10 G. M. D’Ariano, Probabilistic Theories: What is Special about Quantum Mechanics? in: Philosophy of Quantum Information and Entanglement, <Eds/>. A. Bokulich and G. Jaeger, Cambridge UK: Cambridge University Press, 2010, p. 85
https://doi.org/10.1017/CBO9780511676550.007
11 G. Chiribella, G. M. D’Ariano, and P. Perinotti, Probabilistic theories with purification, Phys. Rev. A 81(6), 062348 (2010)
https://doi.org/10.1103/PhysRevA.81.062348
12 J. D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7(8), 2333 (1973)
https://doi.org/10.1103/PhysRevD.7.2333
13 S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
https://doi.org/10.1007/BF02345020
14 R. Bousso, Light Sheets and Bekenstein’s Entropy Bound, Phys. Rev. Lett. 90(12), 121302 (2003)
https://doi.org/10.1103/PhysRevLett.90.121302
15 R. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6), 467 (1982)
https://doi.org/10.1007/BF02650179
16 G. Grössing and A. Zeilinger, Quantum cellular automata, Complex Syst. 2(2), 197 (1988)
17 Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
https://doi.org/10.1103/PhysRevA.48.1687
18 A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Wa-trous, in: Proceedings of the thirty-third annual ACM sym-posium on Theory of computing (ACM, 2001), pp 37–49
19 I. Bialynicki-Birula, Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata, Phys. Rev. D 49(12), 6920 (1994)
https://doi.org/10.1103/PhysRevD.49.6920
20 D. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys. 85(5), 551 (1996)
21 J. Yepez, Relativistic path integral as a lattice-based quantum algorithm, Quantum Inform. Process. 4(6), 471 (2006)
https://doi.org/10.1007/s11128-005-0009-7
22 G. M. D’Ariano, A computational grand-unified theory, 2010
23 G. D’Ariano, CP1232 quantum theory, Reconsideration of Foundations 5, 3 (2010)
24 G. D’Ariano, Advances in quantum theory, AIP Conf. Proc. 1327, 7 (2011)
25 G. D’Ariano, The Dirac quantum automaton: A preview, arXiv: 1211.2479 (2012)
26 G. M. D’Ariano, The quantum field as a quantum computer, Phys. Lett. A 376(5), 697 (2012)
https://doi.org/10.1016/j.physleta.2011.12.021
27 G. M. D’Ariano, A quantum-digital universe, Adv. Sci. Lett. 17(1), 130 (2012)
https://doi.org/10.1166/asl.2012.3686
28 G. M. D’Ariano, A quantum digital universe, Il Nuovo Saggiatore 28, 13 (2012)
https://doi.org/10.1166/asl.2012.3686
29 P. Arrighi, V. Nesme, and M. Forets, The Dirac equation as a quantum walk: higher dimensions, observational convergence, J. Phys. A 47(46), 465302 (2014)
https://doi.org/10.1088/1751-8113/47/46/465302
30 T. C. Farrelly and A. J. Short, Discrete spacetime and relativistic quantum particles, arXiv: 1312.2852 (2013)
31 G. M. D’Ariano and P. Perinotti, The Dirac quantum automaton: A short review, Phys. Scr. 2014, 014014 (2014)
https://doi.org/10.1088/0031-8949/2014/T163/014014
32 A. Bibeau-Delisle, A. Bisio, G. M. D’Ariano, P. Perinotti, and A. Tosini, Doubly special relativity from quantum cellular automata, EPL (Europhys. Lett.) 109(5), 50003 (2015)
https://doi.org/10.1209/0295-5075/109/50003
33 A. Bisio, G. M. D’Ariano, and P. Perinotti, How important is i" in QFT? arXiv: 1503.0101 (2015)
34 M. Erba, Non-Abelian quantum walks and renormalization, Master Thesis, 2014
35 S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Ann. Phys. 298(1), 210 (2002)
https://doi.org/10.1006/aphy.2002.6254
36 G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini, The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory, Int. J. Mod. Phys. A 29(17), 1430025 (2014)
https://doi.org/10.1142/S0217751X14300257
37 G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini, Fermionic computation is non-local tomographic and violates monogamy of entanglement, EPL(Europhys. Lett.) 107(2), 20009 (2014)
https://doi.org/10.1209/0295-5075/107/20009
38 P. de la Harpe, Topics in Geometric Group Theory, The University of Chicago Press, 2Ed., 2003
39 M. Gromov, in: Proc. International Congress of Mathematicians, Vol. 1, p. 2, 1984
40 In the present case local systems are local Fermionic modes. For a detailed description of the Fermionic theory, see Refs. [36, 37].
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed