|
|
Spectral blueshift as a three-dimensional structure-ordering process |
Jun-Ying Huang1,2( ), Zu-Hui Wu1,2, Ji-Ping Huang1,2( ) |
1. Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China 2. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract The transmission spectra of a TiO2-silicone oil suspension in an increasing external electric field are studied. As the electric field increases, the structure of the suspension changes from a disordered one to an ordered one. Interestingly, the transmission spectra blueshift in this structure-ordering process. Furthermore, the relative transmission spectra exhibit Fano-like asymmetric line shapes. The deviation ratio of each asymmetric line shape increases monotonously as the disorder of the suspension decreases. We suggest that this blueshift phenomenon can be used to characterize the disorder strength of threed-imensional systems.
|
Keywords
disordered medium
light propagation
transmission spectrum
blueshift
|
Corresponding Author(s):
Jun-Ying Huang,Ji-Ping Huang
|
Issue Date: 31 May 2017
|
|
1 |
M.Born and E.Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Academic Press, 1999
https://doi.org/10.1017/CBO9781139644181
|
2 |
Q.Gong and X.Hu, Photonic Crystals: Principles and Applications, Pan Standford: Academic Press, 2014
|
3 |
J. Y.Huang and L. W.Zhou, Exceptional enhancement of localization effect in a one-dimensional multilayer system with destructive weak disorder strength, Opt. Lett.36(7), 1305 (2011)
https://doi.org/10.1364/OL.36.001305
|
4 |
D. S.Wiersma, P.Bartolini, A.Lagendijk, and R.Righini, Localization of light in a disordered medium, Nature390(6661), 671 (1997)
https://doi.org/10.1038/37757
|
5 |
S.Zhang,J.Park, V.Milner, and A. Z.Genack, Photon delocalization transition in dimensional crossover in layered media, Phys. Rev. Lett.101(18), 183901 (2008)
https://doi.org/10.1103/PhysRevLett.101.183901
|
6 |
A. A.Fernández-Marín, J. A.Méndez-Bermúdez, J.Carbonell, F.Cervera, J.Sánchez-Dehesa, and V. A.Gopar, Beyond Anderson localization in 1D: Anomalous localization of microwaves in random waveguides, Phys. Rev. Lett.113(23), 233901 (2014)
https://doi.org/10.1103/PhysRevLett.113.233901
|
7 |
L.Levi, M.Rechtsman, B.Freedman, T.Schwartz, O.Manela, and M.Segev, Disorder-enhanced transport in photonic quasi-crystals, Science332(6037), 1541 (2011)
https://doi.org/10.1126/science.1202977
|
8 |
T.Schwartz, G.Bartal, S.Fishman, and M.Segev, Transport and Anderson localization in disordered twodimensional photonic lattices, Nature446(7131), 52 (2007)
https://doi.org/10.1038/nature05623
|
9 |
Y.Lahini, A.Avidan, F.Pozzi, M.Sorel, R.Morandotti, D. N.Christodoulides, and Y.Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices, Phys. Rev. Lett.100(1), 013906 (2008)
https://doi.org/10.1103/PhysRevLett.100.013906
|
10 |
Y.Lahini, R.Pugatch, F.Pozzi, M.Sorel, R.Morandotti, N.Davidson, and Y.Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett.103(1), 013901 (2009)
https://doi.org/10.1103/PhysRevLett.103.013901
|
11 |
P.Ni, P.Zhang, X.Qi, J.Yang, Z.Chen, and W.Man, Light localization and nonlinear beam transmission in specular amorphous photonic lattices, Opt. Express24(3), 2420 (2016)
https://doi.org/10.1364/OE.24.002420
|
12 |
P.Sebbah, B.Hu, J. M.Klosner, and A. Z.Genack, Extended quasimodes within nominally localized random waveguides, Phys. Rev. Lett.96(18), 183902 (2006)
https://doi.org/10.1103/PhysRevLett.96.183902
|
13 |
K. Y.Bliokh, Y. P.Bliokh, V.Freilikher, A. Z.Genack, B.Hu, and P.Sebbah, Localized modes in open onedimensional dissipative random systems, Phys. Rev. Lett.97(24), 243904 (2006)
https://doi.org/10.1103/PhysRevLett.97.243904
|
14 |
I. V.Shadrivov, K. Y.Bliokh, Y. P.Bliokh, V.Freilikher, and Y. S.Kivshar, Bistability of Anderson localized states in nonlinear random media, Phys. Rev. Lett.104(12), 123902 (2010)
https://doi.org/10.1103/PhysRevLett.104.123902
|
15 |
J.Bertolotti, S.Gottardo, D. S.Wiersma, M.Ghulinyan, and L.Pavesi, Optical necklace states in Anderson localized 1D systems, Phys. Rev. Lett.94(11), 113903 (2005)
https://doi.org/10.1103/PhysRevLett.94.113903
|
16 |
M.Störzer, P.Gross, C. M.Aegerter, and G.Maret, Observation of the critical regime near Anderson localization of light, Phys. Rev. Lett.96(6), 063904 (2006)
https://doi.org/10.1103/PhysRevLett.96.063904
|
17 |
J.Wang and A. Z.Genack, Transport through modes in random media, Nature471(7338), 345 (2011)
https://doi.org/10.1038/nature09824
|
18 |
T.Sperling, W.Bührer, C. M.Aegerter, and G.Maret, Direct determination of the transition to localization of light in three dimensions, Nat. Photonics7(1), 48 (2012)
https://doi.org/10.1038/nphoton.2012.313
|
19 |
A. N.Poddubny, M. V.Rybin, M. F.Limonov, and Y. S.Kivshar, Fano interference governs wave transport in disordered systems, Nat. Commun.3, 914 (2012)
https://doi.org/10.1038/ncomms1924
|
20 |
J.Topolancik, B.Ilic, and F.Vollmer, Experimental observation of strong photon localization in disordered photonic crystal waveguides, Phys. Rev. Lett.99(25), 253901 (2007)
https://doi.org/10.1103/PhysRevLett.99.253901
|
21 |
E.Lidorikis, M. M.Sigalas, E. N.Economou, and C. M.Soukoulis, Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials, Phys. Rev. B61(20), 13458 (2000)
https://doi.org/10.1103/PhysRevB.61.13458
|
22 |
J. Y.Huang, B. Q.Dong, and L. W.Zhou, Non-uniform ensembles of diverse resonances in one-dimensional layered media, Opt. Lett.36(13), 2477 (2011)
https://doi.org/10.1364/OL.36.002477
|
23 |
Z.Shi, M.Davy, and A. Z.Genack, Statistics and control of waves in disordered media, Opt. Express23(9), 12293 (2015)
https://doi.org/10.1364/OE.23.012293
|
24 |
P. W.Anderson, Absence of diffusion in certain random lattices, Phys. Rev.109(5), 1492 (1958)
https://doi.org/10.1103/PhysRev.109.1492
|
25 |
H.Cao, Y. G.Zhao, S. T.Ho, E. W.Seelig, Q. H.Wang, and R. P. H.Chang, Random laser action in semiconductor powder, Phys. Rev. Lett.82(11), 2278 (1999)
https://doi.org/10.1103/PhysRevLett.82.2278
|
26 |
C.Toninelli, E.Vekris, G. A.Ozin, S.John, and D. S.Wiersma, Exceptional reduction of the diffusion constant in partially disordered photonic crystals, Phys. Rev. Lett.101(12), 123901 (2008)
https://doi.org/10.1103/PhysRevLett.101.123901
|
27 |
M. V.Rybin, A. B.Khanikaev, M.Inoue, K. B.Samusev, M. J.Steel, G.Yushin, and M. F.Limonov, Fano resonance between Mie and Bragg scattering in phononic crystals, Phys. Rev. Lett.103(2), 023901 (2009)
https://doi.org/10.1103/PhysRevLett.103.023901
|
28 |
U.Fano,Effect of configuration interaction on intensities and phase shifts, Phys. Rev.124(6), 1866 (1961)
https://doi.org/10.1103/PhysRev.124.1866
|
29 |
M. F.Smith, K.Setwong, R.Tongpool, D.Onkaw, S.Na-phattalung, S.Limpijumnong, and S.Rujirawat, Identification of bulk and surface sulfur impurities in TiO2 by synchrotron X-ray absorption near edge structure, Appl. Phys. Lett.91(14), 142107 (2007)
https://doi.org/10.1063/1.2793627
|
30 |
W.Wen, X.Huang, and P.Sheng, Electrorheological fluids: Structures and mechanisms, Soft Matter4(2), 200 (2008)
https://doi.org/10.1039/B710948M
|
31 |
T.Chen, R. N.Zitter, and R.Tao, Laser diffraction determination of the crystalline structure of an electrorheological fluid, Phys. Rev. Lett.68(16), 2555 (1992)
https://doi.org/10.1103/PhysRevLett.68.2555
|
32 |
C. F.Bohren and D. R.Huffman, Absorption and Scattering of Light by Small Particles, New York:Wiley, 1983, page 118
|
33 |
W. J.Tian, M. K.Liu, and J. P.Huang, Origin of the reduced attracting force between a rotating dielectric particle and a stationary one, Phys. Rev. E75(2), 021401 (2007)
https://doi.org/10.1103/PhysRevE.75.021401
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|