Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 130202    https://doi.org/10.1007/s11467-017-0721-7
RESEARCH ARTICLE
Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network
Zhen-Zhen Zou1, Xu-Tao Yu1(), Zai-Chen Zhang2
1. State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
2. National Mobile Communications Research Lab, Southeast University, Nanjing 210096, China
 Download: PDF(539 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.

Keywords entanglement source deployment      quantum connectivity      deployment algorithm     
Corresponding Author(s): Xu-Tao Yu   
Issue Date: 30 October 2017
 Cite this article:   
Zhen-Zhen Zou,Xu-Tao Yu,Zai-Chen Zhang. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network[J]. Front. Phys. , 2018, 13(2): 130202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0721-7
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/130202
1 H. J.Kimble, The quantum internet, Nature453(7198), 1023 (2008)
https://doi.org/10.1038/nature07127
2 C. H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A.Peres, and W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895(1993)
https://doi.org/10.1103/PhysRevLett.70.1895
3 D.Bouwmeester, J. W.Pan, K.Mattle, M.Eibl, H.Weinfurter, and A.Zeilinger, Experimental quantum teleportation, Nature390(6660), 575(1997)
https://doi.org/10.1038/37539
4 A.Karlssonand M.Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A58(6), 4394(1998)
https://doi.org/10.1103/PhysRevA.58.4394
5 F. L.Yanand T.Yan, Probabilistic teleportation via a nonmaximally entangled GHZ state, Chin. Sci. Bull. 55(10), 902(2010)
https://doi.org/10.1007/s11434-009-0725-y
6 A. K.Pati, Assisted cloning and orthogonal complementing of an unknown state, Phys. Rev. A61, 022308(1999)
https://doi.org/10.1103/PhysRevA.61.022308
7 P.Espoukehand P.Pedram, Quantum teleportation through noisy channels with multi-qubit GHZ states, Quantum Inform. Process. 13(8), 1789(2014)
https://doi.org/10.1007/s11128-014-0766-2
8 P.Agrawaland A.Pati, Perfect teleportation and superdense coding with W states, Phys. Rev. A74(6), 062320(2006)
https://doi.org/10.1103/PhysRevA.74.062320
9 S.Adhikari, A. S.Majumdar, S.Roy, B.Ghosh, and N.Nayak, Teleportation via maximally and non-maximally entangled mixed states, Quantum Inf. Comput. 10(5–6), 0398(2010)
10 F.Verstraeteand H.Verschelde, Optimal teleportation with a mixed state of two qubits, Phys. Rev. Lett. 90(9), 097901(2003)
https://doi.org/10.1103/PhysRevLett.90.097901
11 G.Rigolin, Quantum teleportation of an arbitrary two qubit state and its relation to multipartite entanglement, Phys. Rev. A71, 032303(2005)
https://doi.org/10.1103/PhysRevA.71.032303
12 S.Muralidharanand P. K.Panigrahi, Perfect teleportation, quantum state sharing and superdense coding through a genuinely entangled five-qubit state, Phys. Rev. A77(3), 032321(2008)
https://doi.org/10.1103/PhysRevA.77.032321
13 D. P.Tian, Y. J.Tao, and M.Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four qudit cluster state, Sci. China G51, 1523(2008)
https://doi.org/10.1007/s11433-008-0149-8
14 J. C.Liu, Y. H.Li, and Y. Y.Nie, Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state, Int. J. Theor. Phys. 49(8), 1976(2010)
https://doi.org/10.1007/s10773-010-0383-5
15 Y. L.Liu, Z. X.Man, and Y. J.Xia, Quantum teleportation of an arbitrary n-qubit state via non-maximally entangled state, Int. J. Quant. Inf. 5(05), 673(2007)
https://doi.org/10.1142/S0219749907003122
16 D.Sahaand P. K.Panigrahi, N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel, Quantum Inform. Process. 11(2), 615(2012)
https://doi.org/10.1007/s11128-011-0270-x
17 P. X.Chen, S. Y.Zhu, and G. C.Guo, General form of genuine multipartite entanglement quantum channels for teleportation, Phys. Rev. A74(3), 032324(2006)
https://doi.org/10.1103/PhysRevA.74.032324
18 A. K.Ekert, Quantum cryptography based on Bell theorem, Phys. Rev. Lett. 67(6), 661(1991)
https://doi.org/10.1103/PhysRevLett.67.661
19 R.Ursin, F.Tiefenbacher, T.Schmitt-Manderbach, H.Weier, T.Scheidl, M.Lindenthal, B.Blauensteiner, T.Jennewein, J.Perdigues, P.Trojek, B.Ömer, M.Fürst, M.Meyenburg,J.Rarity, Z.Sodnik, C.Barbieri, H.Weinfurter, and A.Zeilinger, Entanglement-based quantum communication over 144 km, Nat. Phys. 3(7), 481(2007)
20 F. G.Deng, G. L.Long, and X. S.Liu, A Two-step quantum direct communication protocol using the Einstein- Podolsky-Rosen pair block, Phys. Rev. A68(4), 042317(2003)
https://doi.org/10.1103/PhysRevA.68.042317
21 J. Y.Hu, B.Yu, M. Y.Jing, L. T.Xiao, S. T.Jia, G. Q.Qin, and G. L.Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144(2016)
https://doi.org/10.1038/lsa.2016.144
22 M.Cao, S. Q.Zhu, and J. X.Fang, Teleportation of n-particle state via npairs of EPR channels, Commum. Theor. Phys. 41(5), 689(2004)
https://doi.org/10.1088/0253-6102/41/5/689
23 P. R.Tapster, J. G.Rarity, and P. C. M.Owens, Violation of Bell’s inequality over 4 km of optical fiber, Phys. Rev. Lett. 73(14), 1923(1994)
https://doi.org/10.1103/PhysRevLett.73.1923
24 W.Tittel, J.Brendel, H.Zbinden, and N.Gisin, Violation of Bell inequalities by photons more than 10 km apart, Phys. Rev. Lett. 81(17), 3563(1998)
https://doi.org/10.1103/PhysRevLett.81.3563
25 H. J.Briegel, W.Dür, J. I.Cirac, and P.Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932(1998)
https://doi.org/10.1103/PhysRevLett.81.5932
26 M.Aspelmeyer, H. R.Böhm, T.Gyatso, T.Jennewein, R.Kaltenbaek, M.Lindenthal, G.Molina-Terriza, A.Poppe, K.Resch, M.Taraba, R.Ursin, P.Walther, and A.Zeilinger, Long-distance free-space distribution of quantum entanglement, Science301(5633), 621(2003)
https://doi.org/10.1126/science.1085593
27 C. Z.Peng, T.Yang, X. H.Bao, J.Zhang, X. M.Jin, F. Y.Feng, B.Yang, J.Yang, J.Yin, Q.Zhang, N.Li, B. L.Tian, and J. W.Pan, Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite-based global quantum communication, Phys. Rev. Lett.94(15), 150501(2005)
https://doi.org/10.1103/PhysRevLett.94.150501
28 A.Fedrizzi, R.Ursin, T.Herbst, M.Nespoli, R.Prevedel, T.Scheidl, F.Tiefenbacher, T.Jennewein, and A.Zeilinger, High-fidelity transmission of entanglement over a high-loss freespace channel, Nat. Phys. 5(6), 389(2009)
29 D.Boschi, S.Branca, F.De Martini, L.Hardy, and S.Popescu,Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett.80(6), 1121(1998)
https://doi.org/10.1103/PhysRevLett.80.1121
30 X. M.Jin, J. G.Ren, B.Yang, Z. H.Yi, F.Zhou, X. F.Xu, S. K.Wang, D.Yang, Y. F.Hu, S.Jiang, T.Yang, H.Yin, K.Chen, C. Z.Peng, and J. W.Pan, Experimental free-space quantum teleportation, Nat. Photonics4(6), 376(2010)
https://doi.org/10.1038/nphoton.2010.87
31 J.Yin, J. G.Ren, H.Lu, Y.Cao, H. L.Yong, Y. P.Wu, C.Liu, S. K.Liao, F.Zhou, Y.Jiang, X. D.Cai, P.Xu, G. S.Pan,J. J.Jia, Y. M.Huang, H.Yin, J. Y.Wang, Y. A.Chen, C. Z.Peng, and J. W.Pan, Quantum teleportation and entanglement distribution over 100- kilometre free-space channels, Nature488(7410), 185(2012)
https://doi.org/10.1038/nature11332
32 X. T.Yu, Z. C.Zhang, and J.Xu, Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B23, 010303(2014)
https://doi.org/10.1088/1674-1056/23/1/010303
33 L. H.Shi, X. T.Yu, X. F.Cai,Y. X.Gong, and Z. C.Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B24(5), 050308(2015)
https://doi.org/10.1088/1674-1056/24/5/050308
34 X. F.Cai, X. T.Yu, L. H.Shi, and Z. C.Zhang,Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646(2014)
https://doi.org/10.1007/s11467-014-0432-2
35 K.Wang, X. T.Yu, S. L.Lu, and Y. X.Gong, Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A89, 022329(2014)
https://doi.org/10.1103/PhysRevA.89.022329
36 P. Y.Xiong, X. T.Yu, H. T.Zhan, and Z. C.Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303(2016)
https://doi.org/10.1007/s11467-016-0553-x
37 Z. Z.Zou, X. T.Yu, Y. X.Gong, and Z. C.Zhang, Multihop teleportation of two-qubit state via the composite GHZ-Bell channel, Phys. Lett. A381(2), 76(2017)
https://doi.org/10.1016/j.physleta.2016.10.048
38 N.Gisin, G.Ribordy, W.Tittel, and H.Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145(2002)
https://doi.org/10.1103/RevModPhys.74.145
39 C. H.Bennett, G.Brassard, S.Popescu, B.Schumacher, J. A.Smolin, and W. K.Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722(1996)
https://doi.org/10.1103/PhysRevLett.76.722
40 J. W.Pan,C.Simon, ČBrukner, and A.Zeilinger, Entanglement purification for quantum communication, Nature410(6832), 1067(2001)
https://doi.org/10.1038/35074041
41 F. G.Deng, One-step error correction for multipartite polarization entanglement, Phys. Rev. A83(6), 062316(2011)
https://doi.org/10.1103/PhysRevA.83.062316
42 Y. B.Sheng, J.Pan, R.Guo, L.Zhou, and L.Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 1(2015)
https://doi.org/10.1007/s11433-015-5672-9
43 L.Zhouand Y. B.Sheng, Purification of logic-qubit entanglement, Sci. Rep. 6(1), 28813(2016)
https://doi.org/10.1038/srep28813
44 G.Boudreau, J.Panicker, N.Guo, R.Chang, N.Wang, and S.Vrzic, Interference coordination and cancellation for 4G networks, IEEE Commun. Mag. 47(4), 74(2009)
https://doi.org/10.1109/MCOM.2009.4907410
45 E. Q. V.Martinsand M. M. B.Pascoal, A new implementation of Yen’s ranking loopless paths algorithm, Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(2), 121(2003)
https://doi.org/10.1007/s10288-002-0010-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed