|
|
Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice |
A. Parmentier1( ), C. Andreani1,2, G. Romanelli1,3, J. J. Shephard4,5, C. G. Salzmann4, R. Senesi1,2( ) |
1. Università degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma, Italy 2. CNR-IPCF Sezione di Messina, v.le F. Stagno D’Alcontres 37, 98158 Messina, Italy 3. ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK 4. University College London, Dept. of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK 5. Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK |
|
|
Abstract The hydrogen mean force from experimental neutron Compton profiles is derived using deep inelastic neutron scattering on amorphous and polycrystalline ice. The formalism of mean force is extended to probe its sensitivity to anharmonicity in the hydrogen-nucleus effective potential. The shape of the mean force for amorphous and polycrystalline ice is primarily determined by the anisotropy of the underlying quasi-harmonic effective potential. The data from amorphous ice show an additional curvature reflecting the more pronounced anharmonicity of the effective potential with respect to that of ice Ih.
|
Keywords
potential of mean force
neutron Compton profile
nuclear quantum effects
path integral representation
anharmonicity
|
Corresponding Author(s):
A. Parmentier,R. Senesi
|
Issue Date: 08 December 2017
|
|
1 |
M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A. Morales, and T. E. Markland, Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges, Chem. Rev. 116(5), 7259 (2016)
https://doi.org/10.1021/acs.chemrev.5b00674
|
2 |
J. M. F. Gunn, C. Andreani, and J. Mayers, A new approach to impulsive neutron scattering, J. Phys. C Solid State Phys. 19(36), L835 (1986)
https://doi.org/10.1088/0022-3719/19/36/001
|
3 |
C. Andreani, D. Colognesi, J. Mayers, G. F. Reiter, and R. Senesi, Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering, Adv. Phys. 54(5), 377 (2005)
https://doi.org/10.1080/00018730500403136
|
4 |
G. B. West, Electron scattering from atoms, nuclei and nucleons, Phys. Rev. C 18, 263 (1975)
https://doi.org/10.1016/0370-1573(75)90035-6
|
5 |
G. Reiter and R. Silver, Measurement of interionic potentials in solids using deep-inelastic neutron scattering, Phys. Rev. Lett. 54(10), 1047 (1985)
https://doi.org/10.1103/PhysRevLett.54.1047
|
6 |
G. I. Watson, Neutron Compton scattering, J. Phys.: Condens. Matter 8(33), 5955 (1996)
https://doi.org/10.1088/0953-8984/8/33/005
|
7 |
C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, and F. Fernandez-Alonso, Electron-volt neutron spectroscopy: beyond fundamental systems, Adv. Phys. 66(1), 1 (2017)
https://doi.org/10.1080/00018732.2017.1317963
|
8 |
J. A. Morrone and R. Car, Nuclear quantum effects in water, Phys. Rev. Lett. 101(1), 017801 (2008)
https://doi.org/10.1103/PhysRevLett.101.017801
|
9 |
R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55(22), 2471 (1985)D. Marx and M. Parrinello, Ab initio path integral molecular dynamics, Z. Phys. B 95(2), 143 (1994)
https://doi.org/10.1103/PhysRevLett.55.2471
|
10 |
D. Marx and M. Parrinello, Ab initio path integral molecular dynamics: Basic ideas, J. Chem. Phys. 104(11), 4077 (1996)
https://doi.org/10.1007/BF01312185
|
11 |
L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Displaced path integral formulation for the momentum distribution of quantum particles, Phys. Rev. Lett. 105(11), 110602 (2010)
https://doi.org/10.1063/1.471221
|
12 |
B. Cheng, J. Behler, and M. Ceriotti, Nuclear quantum effects in water at the triple point: Using theory as a link between experiments, J. Phys. Chem. Lett. 7(12), 2210 (2016)
https://doi.org/10.1103/PhysRevLett.105.110602
|
13 |
C. Andreani, G. Romanelli, and R. Senesi, A Combined INS and DINS study of proton quantum dynamics of ice and water across the triple point and in the supercritical phase, Chem. Phys. 427, 106 (2013)
https://doi.org/10.1021/acs.jpclett.6b00729
|
14 |
R. Senesi, G. Romanelli, M. A. Adams, and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chem. Phys. 427, 111 (2013)
https://doi.org/10.1016/j.chemphys.2013.07.009
|
15 |
D. Flammini, A. Pietropaolo, R. Senesi, C. Andreani, F. McBride, A. Hodgson, M. A. Adams, L. Lin, and R. Car, Spherical momentum distribution of the protons in hexagonal ice from modeling of inelastic neutron scattering data, J. Chem. Phys. 136(2), 024504 (2012)
https://doi.org/10.1016/j.chemphys.2013.09.010
|
16 |
C. Pantalei, A. Pietropaolo, R. Senesi, S. Imberti, C. Andreani, J. Mayers, C. Burnham, and G. Reiter, Proton momentum distribution of liquid water from room temperature to the supercritical phase, Phys. Rev. Lett. 100(17), 177801 (2008)
https://doi.org/10.1063/1.3675838
|
17 |
C. Andreani, G. Romanelli, and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, J. Phys. Chem. Lett. 7(12), 2216 (2016)
https://doi.org/10.1103/PhysRevLett.100.177801
|
18 |
R. P. Feynman, Forces in molecules, Phys. Rev. 56(4), 340 (1939)
https://doi.org/10.1021/acs.jpclett.6b00926
|
19 |
R. Senesi, Direct kinetic energy extraction from neutron compton profiles, Nucl. Instrum. Methods Phys. Res. 661(1), 70 (2012)
https://doi.org/10.1103/PhysRev.56.340
|
20 |
V. F. Sears, Scaling and final-state interactions in deepinelastic neutron scattering, Phys. Rev. B 30(1), 44 (1984)
https://doi.org/10.1016/j.nima.2011.09.039
|
21 |
J. Mayers, User Guide to VESUVIO Data Analysis Programs for Powders and Liquids, Technical Report RALTR-2011-003, STFC (2011)
https://doi.org/10.1103/PhysRevB.30.44
|
22 |
R. Senesi, C. Andreani, Z. Bowden, D. Colognesi, E. Degiorgi, A. L. Fielding, J. Mayers, M. Nardone, J. Norris, M. Praitano, N. J. Rhodes, W. G. Stirling, J. Tomkinson, and C. Uden, VESUVIO: A novel instrument for performing spectroscopic studies in condensed matter with eV neutrons at the ISIS facility, Physica B276–278, 200 (2000)
|
23 |
A. Pietropaolo and R. Senesi, Electronvolt neutron spectrometers, Phys. Rep. 508(3), 45 (2011)
|
24 |
V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt, and K. Kremer, Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations, Macromolecules 39(19), 6708 (2006)
https://doi.org/10.1021/ma0606399
|
25 |
D. Trzesniak, A. P. E. Kunz, and W. F. van Gunsteren, A comparison of methods to compute the potential of mean force, Chem Phys Chem 8(1), 162 (2007)
https://doi.org/10.1002/cphc.200600527
|
26 |
D. M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67(2), 279 (1995)
https://doi.org/10.1103/RevModPhys.67.279
|
27 |
S. K. Kauffmann and J. Rafelski, Analytic study of a sequence of path integral approximations for simple quantum systems at low temperature, Z. Phys. C 24(2), 157 (1984)
https://doi.org/10.1007/BF01571720
|
28 |
T. W. Whitfield and J. E. Straub, Uncertainty of path integral averages at low temperature, J. Chem. Phys. 115(15), 6834 (2001)
https://doi.org/10.1063/1.1403691
|
29 |
J. A. Morrone, V. Srinivasan, D. Sebastiani, and R. Car, Proton momentum distribution in water: An open path integral molecular dynamics study, J. Chem. Phys. 126(23), 234504 (2007)
https://doi.org/10.1063/1.2745291
|
30 |
Y. Marechal, The Hydrogen Bond and the Water Molecule- The Physics and Chemistry of Water, Aqueous and Bio-Media, Elsevier Science, 2006
|
31 |
P. M. Morse, Diatomic molecules according to the wave mechanics (II): Vibrational levels, Phys. Rev. 34(1), 57 (1929)
https://doi.org/10.1103/PhysRev.34.57
|
32 |
J. P. Dahl and M. Springborg, The Morse oscillator in position space, momentum space, and phase space, J. Chem. Phys. 88(7), 4535 (1988)
https://doi.org/10.1063/1.453761
|
33 |
M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover Publications Inc., 1970
|
34 |
L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Momentum distribution, vibrational dynamics and the potential of mean force in ice, Phys. Rev. B 83(22), 220302 (2011)
https://doi.org/10.1103/PhysRevB.83.220302
|
35 |
T. Iijima, Anharmonicity of the OH...O hydrogen bond in liquid water, Chem. Phys. Lett. 217(5–6), 503 (1994)
https://doi.org/10.1016/0009-2614(93)E1428-J
|
36 |
R. H. McKenzie, C. Bekker, B. Athokpam, and S. G. Ramesh, Effect of quantum nuclear motion on hydrogen bonding, J. Chem. Phys. 140(17), 174508 (2014)
https://doi.org/10.1063/1.4873352
|
37 |
D. Hadzi and S. Bratos, in: The Hydrogen Bond: Recent Developments in Theory and Experiments, Vol. II, Structure and Spectroscopy, Eds. P. Schuster, G. Zundel, and C. Sandorfy, Amsterdam: North Holland Publishing Company, 1976
|
38 |
M. Barbatti and M. A. C. Nascimento, Vibrational analysis of small Hn+ hydrogen clusters, J. Chem. Phys. 119(11), 5444 (2003)
https://doi.org/10.1063/1.1599350
|
39 |
X. Zhang, S. Chen, and J. Li, Hydrogen-bond potential for ice VIII-X phase transition, Sci. Rep. 6(1), 37161 (2016)
https://doi.org/10.1038/srep37161
|
40 |
H. J. Bakker, H.K. Nienhuys, G. Gallot, N. Lascoux, G. M. Gale, J.C. Leicknam, and S. Bratos, Transient absorption of vibrationally excited water,J. Chem. Phys. 116(6), 2592 (2002)
https://doi.org/10.1063/1.1432687
|
41 |
A. Parmentier, J. J. Shephard, G. Romanelli, R. Senesi, C. G. Salzmann, and C. Andreani, Evolution of hydrogen dynamics in amorphous ice with density, J. Chem. Phys. Lett. 6(11), 2038 (2015)
https://doi.org/10.1021/acs.jpclett.5b00711
|
42 |
J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron, Structures of high and low density amorphous ice by neutron diffraction, Phys. Rev. Lett. 88(22), 225503 (2002)
https://doi.org/10.1103/PhysRevLett.88.225503
|
43 |
J. L. Finney, D. T. Bowron, A. K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Structure of a new dense amorphous ice, Phys. Rev. Lett. 89(20), 205503 (2002)
https://doi.org/10.1103/PhysRevLett.89.205503
|
44 |
J. J. Shephard, S. Ling, G. C. Sosso, A. Michaelides, B. Slater, and C. G. Salzmann, Is high-density amorphous ice simply a ‘derailed’ state along the ice I to ice IV pathway? J. Phys. Phys. Lett. 8, 1645 (2017)
https://doi.org/10.1021/acs.jpclett.7b00492
|
45 |
M. Guthrie, C. A. Tulk, C. J. Benmore, and D. D. Klug, A structural study of very high-density amorphous ice, Chem. Phys. Lett. 397(4–6), 335 (2004)
https://doi.org/10.1016/j.cplett.2004.07.116
|
46 |
A. Shalit, F. Perakis, and P. Hamm, Communication: Disorder-suppressed vibrational relaxation in vapordeposited high-density amorphous ice,J. Chem. Phys. 140(15), 151102 (2014)
https://doi.org/10.1063/1.4871476
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|