Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 133701    https://doi.org/10.1007/s11467-017-0727-1
RESEARCH ARTICLE
A versatile electrostatic trap with open optical access
Sheng-Qiang Li(李胜强)1(), Jian-Ping Yin (印建平)2
1. School of New Energy and Electronic Engineering, Yancheng Teachers University, Yancheng 224007, China
2. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
 Download: PDF(3206 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

Keywords atomic and molecular physics      electrostatic trap      cold polar molecules      finite element analysis     
Corresponding Author(s): Sheng-Qiang Li(李胜强)   
Issue Date: 08 December 2017
 Cite this article:   
Sheng-Qiang Li(李胜强),Jian-Ping Yin (印建平). A versatile electrostatic trap with open optical access[J]. Front. Phys. , 2018, 13(2): 133701.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0727-1
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/133701
1 J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Measurement of the electron electric dipole moment using YbF molecules, Phys. Rev. Lett. 89(2), 023003 (2002)
https://doi.org/10.1103/PhysRevLett.89.023003
2 J. Veldhoven, J. Küpper, H. L. Bethlem, B. Sartakov, A. J. A. Roij, and G. Meijer, Decelerated molecular beams for high-resolution spectroscopy, Eur. Phys. J. D 31(2), 337 (2004)
https://doi.org/10.1140/epjd/e2004-00160-9
3 E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
https://doi.org/10.1103/PhysRevLett.96.143004
4 J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, Near-threshold inelastic collisions using molecular beams with a tunable velocity, Science 313(5793), 1617 (2006)
https://doi.org/10.1126/science.1131867
5 S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules, Phys. Rev. Lett. 100(4), 043203 (2008)
https://doi.org/10.1103/PhysRevLett.100.043203
6 B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Klos, D. Patterson, J. M. Doyle, and J. Ye, Cold heteromolecular dipolar collisions, Phys. Chem. Chem. Phys. 13(42), 19059 (2011)
https://doi.org/10.1039/c1cp21203f
7 L. P. Parazzoli, N. Fitch, D. S. Lobser, and H. J. Lewandowski, High-energy-resolution molecular beams for cold collision studies, New J. Phys. 11(5), 055031 (2009)
https://doi.org/10.1088/1367-2630/11/5/055031
8 D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
https://doi.org/10.1103/PhysRevLett.88.067901
9 T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Two-dimensional trapping of dipolar molecules in time-varying electric fields, Phys. Rev. Lett. 92(22), 223001 (2004)
https://doi.org/10.1103/PhysRevLett.92.223001
10 Y. Xia, Y. L. Yin, H. B. Chen, L. Z. Deng, and J. P. Yin, Electrostatic surface guiding for cold polar molecules: Experimental demonstration, Phys. Rev. Lett. 100(4), 043003 (2008)
https://doi.org/10.1103/PhysRevLett.100.043003
11 L. Z. Deng, Y. Liang, Z. X. Gu, S. Y. Hou, S. Q. Li, Y. Xia, and J. P. Yin, Experimental demonstration of a controllable electrostatic molecular beam splitter, Phys. Rev. Lett. 106(14), 140401 (2011)
https://doi.org/10.1103/PhysRevLett.106.140401
12 S. D. S. Gordon and A. Osterwalder, 3D-printed beam splitter for polar neutral molecules, Phys. Rev. Appl. 7(4), 044022 (2017)
https://doi.org/10.1103/PhysRevApplied.7.044022
13 H. L. Bethlem, G. Berden, and G. Meijer, Decelerating neutral dipolar molecules, Phys. Rev. Lett. 83(8), 1558 (1999)
https://doi.org/10.1103/PhysRevLett.83.1558
14 M. Quintero-Pérez, P. Jansen, T. E. Wall, J. E. van den Berg, S. Hoekstra, and H. L. Bethlem, Static trapping of polar molecules in a traveling wave decelerator, Phys. Rev. Lett. 110(13), 133003 (2013)
https://doi.org/10.1103/PhysRevLett.110.133003
15 S. Y. Hou, S. Q. Li, L. Z. Deng, and J. P. Yin, Dependences of slowing results on both decelerator parameters and the new operating mode: Taking ND3 molecules as an example, J. Phys. At. Mol. Opt. Phys. 46(4), 045301 (2013)
https://doi.org/10.1088/0953-4075/46/4/045301
16 F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, A prototype storage ring for neutral molecules, Nature 411(6834), 174 (2001)
https://doi.org/10.1038/35075537
17 P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, Multiple packets of neutral molecules revolving for over a mile, Phys. Rev. Lett. 105(17), 173001 (2010)
https://doi.org/10.1103/PhysRevLett.105.173001
18 S. Q. Li, L. Xu, L. Z. Deng, and J. P. Yin, Controllable electrostatic surface storage ring with opened optical access for cold polar molecules on a chip, J. Opt. Soc. Am. B 31(1), 110 (2014)
https://doi.org/10.1364/JOSAB.31.000110
19 S. J. Wark and G. I. Opat, An electrostatic mirror for neutral polar molecules, J. Phys. At. Mol. Opt. Phys. 25(20), 4229 (1992)
https://doi.org/10.1088/0953-4075/25/20/018
20 H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, Electrostatic trapping of ammonia molecules, Nature 406(6795), 491 (2000)
https://doi.org/10.1038/35020030
21 T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Continuous loading of an electrostatic trap for polar molecules, Phys. Rev. Lett. 95(17), 173002 (2005)
https://doi.org/10.1103/PhysRevLett.95.173002
22 S. A. Meek, H. Conrad, and G. Meijer, Trapping molecules on a chip, Science 324(5935), 1699 (2009)
https://doi.org/10.1126/science.1175975
23 Z. X. Wang, Z. X. Gu, Y. Xia, X. Ji, and J. P. Yin, Optically accessible electrostatic trap for cold polar molecules, J. Opt. Soc. Am. B 30(9), 2348 (2013)
https://doi.org/10.1364/JOSAB.30.002348
24 M. Schnell, P. Lutzow, J. van Veldhoven, H. L. Bethlem, J. Kupper, B. Friedrich, M. Schleier-Smith, H. Haak, and G. Meijer, A linear AC trap for polar molecules in their ground state, J. Phys. Chem. A 111(31), 7411 (2007)
https://doi.org/10.1021/jp070902n
25 Z. X. Wang, Z. X. Gu, L. Z. Deng, and J. P. Yin, Cooling and trapping polar molecules in an electrostatic trap, Chin. Phys. B 24(5), 053701 (2015)
https://doi.org/10.1088/1674-1056/24/5/053701
26 W. J. Mullin and F. Laloe, Interference effects in potential wells, Phys. Rev. A 91(5), 053629 (2015)
https://doi.org/10.1103/PhysRevA.91.053629
27 W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hansch, Trapped-atom interferometer in a magnetic microtrap, Phys. Rev. A 64(6), 063607 (2001)
https://doi.org/10.1103/PhysRevA.64.063607
28 S. J. Kim, H. Yu, S. T. Gang, D. Z. Anderson, and J. B. Kim, Controllable asymmetric double well and ring potential on an atom chip, Phys. Rev. A 93(3), 033612 (2016)
https://doi.org/10.1103/PhysRevA.93.033612
29 P. R. Brooks, Reactions of oriented molecules, Science 193(4247), 11 (1976)
https://doi.org/10.1126/science.193.4247.11
30 M. Brouard, D. H. Parker, and S. Y. T. van de Meerakker, Taming molecular collisions using electric and magnetic fields, Chem. Soc. Rev. 43(21), 7279 (2014)
https://doi.org/10.1039/C4CS00150H
31 L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Dynamics of a tunable superfluid junction, Phys. Rev. Lett. 106(2), 025302 (2011)
https://doi.org/10.1103/PhysRevLett.106.025302
32 S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature 449(7162), 579 (2007)
https://doi.org/10.1038/nature06186
33 S. Y. T. van de Meerakker, H. L. Bethlem, N. Vanhaecke, and G. Meijer, Manipulation and control of molecular beams, Chem. Rev. 112(9), 4828 (2012)
https://doi.org/10.1021/cr200349r
34 L. Fusina and G. D. Lonardo, Inversion-rotation spectrum and spectroscopic parameters of 14ND3 in the ground state, J. Mol. Spectrosc. 112(1), 211 (1985)
https://doi.org/10.1016/0022-2852(85)90205-X
35 G. D. Lonardo and A. Trombetti, Dipole moment of the v2= 1 state of ND3 by saturation laser stark spectroscopy, Chem. Phys. Lett. 84(2), 327 (1981)
https://doi.org/10.1016/0009-2614(81)80356-9
36 G. Raithel, G. Birkl, A. Kastberg, W. D. Phillips, and S. L. Rolston, Cooling and localization dynamics in optical lattices, Phys. Rev. Lett. 78(4), 630 (1997)
https://doi.org/10.1103/PhysRevLett.78.630
37 A. Hemmerich, M. Weidemuller, T. Esslinger, C. Zimmermann, and T. Hansch, Trapping atoms in a dark optical lattice, Phys. Rev. Lett. 75(1), 37 (1995)
https://doi.org/10.1103/PhysRevLett.75.37
38 M. C. Fischer, K. W. Madison, Q. Niu, and M. G. Raizen, Observation of Rabi oscillations between Bloch bands in an optical potential, Phys. Rev. A 58, R2648(R) (1998)
39 M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett. 76, 4508 (1996)
https://doi.org/10.1103/PhysRevLett.76.4508
40 C. Jurczak, B. Desruelle, K. Sengstock, J. -Y. Courtois, C. I. Westbrook, and A. Aspect, Atomic transport in an optical lattice: An investigation through polarizationselective intensity correlations, Phys. Rev. Lett. 77, 1727 (1996)
https://doi.org/10.1103/PhysRevLett.77.1727
41 S. K. Dutta, B. K. Teo, and G. Raithel, Tunneling dynamics and gauge potentials in optical lattices,Phys. Rev. Lett. 83(10), 1934 (1999)
https://doi.org/10.1103/PhysRevLett.83.1934
42 M. Weidemuller, A. Hemmerich, A. Gorlitz, T. Esslinger, and T. W. Hansch, Bragg diffraction in an atomic lattice bound by light, Phys. Rev. Lett. 75(25), 4583 (1995)
https://doi.org/10.1103/PhysRevLett.75.4583
43 J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)
https://doi.org/10.1103/PhysRevLett.91.107902
44 J. P. Yin, W. J. Gao, N. C. Liu, J. J. Hu, and Y. Z. Wang, Magnetic guide and trap for cold neutral atoms with current-carrying wires and conductors, J. Chin. Chem. Soc. (Taipei) 48(3), 555 (2001)
https://doi.org/10.1002/jccs.200100085
45 J. P. Yin, W. J. Gao, J. J. Hu, and Y. Q. Wang, Magnetic surface microtraps for realizing an array of alkali atomic Bose–Einstein condensates or Bose clusters, Opt. Commun. 206(1–3), 99 (2007)
46 J. P. Yin, W. J. Gao, J. J. Hu, and N. C. Liu, Atomic magnetic lattices and their applications, Chin. Phys. Lett. 19(3), 327 (2002)
https://doi.org/10.1088/0256-307X/19/3/313
47 J. P. Yin, W. J. Gao, and J. J. Hu, Arrays of microscopic magnetic traps for cold atoms and their applications in atom optics, Chin. Phys. 11(5), 472 (2002)
https://doi.org/10.1088/1009-1963/11/5/312
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed